PCL5
Developer’s Guide

HEWLETT
(ﬁﬁ] PACKARD
Edition 1
E0792

5961- 0546
Printed in U.S.A. 7/92

1
Notice
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-
Packard shall not be liable for errors contained herein or for incidental consequential dam-
ages in connection with the furnishing, performance, or use of this material.

This document contains proprietary information which is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced, or translated with-
out the prior written consent of Hewlett-Packard Company.

Copyright © 1992 by HEWLETT-PACKARD CO.

Intellifont is a registered trademark of Agfa, a division of Miles, Inc.

Type Director is a trademark of Agfa, a division of Miles, Inc.

CG Times is a product of Agfa, a division of Miles, Inc.

Univers, Times Roman, and Helvetica are trademarks of Linotype AG or its subsidiaries.
ITC Garamond & ITC Bookman are registered trademarks of International Typeface Corp.
PCL is a trademark of Hewlett-Packard Company.

PANOSE is a trademark of Elseware Corporation.

TrueType is a trademark of Apple Computer, Inc.

Printing History First Edition — July 1992

Table of Contents

Chapter 1 Introduction
How to Use ThisManual 1-1
Manual Organization. 1-1
Manual Terms and Conventions............... 1-6
Using the Examples. 1-6
Differences Between the PCL 4 and PCL 5 Printers . . 1-7
Additional LaserJet 4 Features.................. 1-10

Chapter 2 Setting Up A Print Job

Introduction, 2-1
Printer Job Language (PJL) 2-1
Brief Overview of the Laserdet Print File Structure . . 2-3
The Print Environment 2-7

OVErVIEW. . . ottt 2-7

Changing the Print Environment.............. 2-9

Reverting to Environment Default Values. 2-11
Laserdet JobSetup. 2-13
Making Copies of thedJob. 2-30
Laserdet I1ISi Job Setup Commands 2-31
MemoryUsage, 2-33

Chapter Summary 2-37

Chapter 3

Page Setup
Introduction 3-1
Selecting a Paper Source. 3-1
Selecting a Physical Page Size 3-2
The Actual Printable Area. 3-4
Changing Orientation 3-9
Print Direction. 3-11
Managingthe Text Area 3-13
Controlling Top Margin. 3-15
Establishing the Bottom Margin 3-16
Perforation Skip for Print-and-Space Formatting. 3-17
Controlling the Left Margin.................. 3-19
Controlling Right Margin.................... 3-20
Changing Character Spacing (HMI) 3-21
Modifying Line Spacing (VMID) 3-22

Chapter 4

Cursor Positioning

Introduction 4-1
Current Active Position (CAP) 4-1
Print-and-Space Cursor Positioning. 4-5
Absolute vs. Relative Positioning 4-6
Units of Movement 4-7
Saving the Cursor Position...................... 4-10
Positioning the Cursor at the Limits of the Page 4-11
How the Paper Path Affects Cursor Placement. 4-16

Chapter 5

Using Fonts

Chapter 6

Introduction 5-1
SelectingFonts.............. 5-2
General Font Management 5-9
Working With Fonts 5-14
Justifying Text When Using Proportional Fonts . 5-14
Adjusting Line Spacing for Point Size 5-17
Transparent Print Data and Special Characters. 5-18
Underlining Characters. 5-19
FontHeaders 5-20
AutoFont Support
Introduction, 6-1
TFM File Structure 6-2
TFM Tag Descriptions 6-11
Font Identification......................... 6-12
Font Parameters 6-23
Character Parameters...................... 6-27
Kerning Information 6-29
DeviceData 6-35
PANOSE Numbers. 6-36
“Glue” File Descriptionand Usage 6-37
FileFormat............................... 6-37
FontEntries.......... 6-38
Supported Fonts 6-47

Comparing Past Font Support With TFM Support .. 6-49

AutoFont Support, 6-52

Hard-coding TFM Data...................... 6-52
TFM Reader Integration..................... 6-53
Available Tools for TFM Reader Integration. 6-55
The TFM Reader Program 6-56
End-User Considerations 6-57
Usingthe TFM Reader 6-58
TFM Reader DataFlow 6-59
Modifying the TFM Reader. 6-61
Accessing the TFM Data Structure 6-62
Supplied TFM Files. 6-66
File Naming Convention. 6-67
Sample TFM Implementation 6-68
Selecting Fonts Using TFM Information 6-73
Locating the TFM Files. 6-79
TheGlueFile.......... 6-80
Creating TFMFiles 6-81
Available Tools. oL, 6-82
The TFM Writer, 6-82
PANOSE Numbers 6-88
Modifying the TFM Writer 6-88
Compiling the TFM Writer.................. 6-100
.
Chapter 7 Intellifont ® Integration
Why Integrate Intellifont?. 7-1
Font File Formats 7-1
Adding Intellifont to Your Application Software 7-5
Screen Fonts. 7-13

vi

Chapter 8 AutoFont Support For TrueType
Introduction 8-1
TrueType Information for TFM tags............... 8-1
The Development Environment for the TFM Writer . 8-10
Compiler Version 8-10
Description of Files 8-11
Compiling the TFM Writer 8-12
Generating a TrueType TFM. 8-12

Chapter 9 Raster Graphics
Introduction, 9-1
The Raster Graphics System..................... 9-1
Using Raster Graphics.......................... 9-3
Raster Compression Modes 9-5
Compression Mode Performance 9-15
End Raster Graphics 9-16
Positioning the Cursor for Raster Graphics 9-17
Merging Text With Raster Graphics 9-17
Auto-Rotation of Raster Images 9-20

vii

Chapter 10

Vector Graphics

Introduction 10-1

Additional LaserJet 4 Features 10-1
The Picture Presentation Directives. 10-2
PCL Picture Frame & HP-GL/2 Plot Size 10-3
The Picture Frame Anchor Point 104
Basic Steps for Importing an HP-GL/2 Plot. 10-4
Basic Steps for Creating an HP-GL/2 Plot.......... 10-5
When to Use Vector Graphics vs. Raster Graphics . .. 10-6
HP-GL/2 & PCL Orientation Interactions 10-7
Vector Graphics Limits 10-9
The Scaling Factor and the Picture Frame 10-10
Memory usage and HP-GL/2.................... 10-12
Using HP-GL/2 Commands. 10-13

Chapter 11

viii

The Print Model

The Print Model—Filling With Patterns 11-1
How the Print Model Works 11-3
Using Rectangular Area Fill 11-5
Patterning Other Images 11-7

Using the Print Model Commands............. 11-7
User-Defined Patterns. 11-13

Chapter 12 Using Macros
Introduction 121
Creating Macros.coiiiiiiiennnnnn.. 12-2
Using Macroscvviiiiiii i 12-2
General Macro Management.................... 124
HP-GL/2 in the Macro Environment. 12-6
Summary of Rules Concerning Macros............ 12-6

Chapter 13 Tips for Efficient Programming
Introduction 13-1
General TipS i 13-1
Combining Escape Sequences................ 13-1
JobSetup 13-2
For Non-PJL LaserdJet Printers 13-2
For PJL Laserdet Printers 13-2
PageSetup 13-4
General Print Job Initialization 13-5
Non-PJLExample 13-7
Laserdet IIISi Example..................... 13-7
LaserdJet4 Example........................ 13-8
UsingFonts.............. 13-8
Font Support. 13-9
Raster Graphics 13-9
The Print Model 13-10
Vector Graphies., 13-11
Macros. ...t 13-12

Chapter 14 Common Problems & Their Solutions
Introduction 14-1
Missing Characters or Graphics 14-1
Running Out of Memory (Error20) 14-1
Print Overrun (Error21)........................ 14-3
Reset (EcE) Deleting Temporary Fonts and Macros .. 14-3
PJL-Specific Problems. 14-3
Reset (EcE) Causing Printing of Partial Pages 14-4
Clipped GraphicImages 14-4
HP-GL/2 Images Not Printing Properly............ 14-5

Appendix A LaserJet Printer Features and Compatibility
Feature Support Table. A-1
Laserdet Compatibility Issues A-10

Appendix B Programming Examples
Introduction B-1
Fonts and Print Direction B-1
Printing Rules Using the Print Model B-3
Print Model Font Effects..................... ... B-3
HP-GL/2Font Effects B-6
HP-GL/2 Graphics, B9
Raster Graphics Compression. B-10

Appendix C

Integrating Rambo

Introduction C-1
The Rambo Command Line...................... C-5
Example Implementation Using Rambo........... C-12
Printingthe Test Files C-18

Appendix D

Using the BUILDSYM Utility

Introduction, D-1
The BUILDSYMKit. ..., D-1
How Does BUILDSYM Work? D-2
Using BUILDSYMt D-5

Creating a Symbol Set Definition File ((SYM File) ... D-6

Appendix E

Using the FASST Utility

OVErVIEW . . ottt et E-1
The FASSTKit...... ..., E-1
FileFormats......... E-2
FASST Shell Usageciiiiian... E-3
FASST Integration............................. E-5
Major Functions, E-6
Modifyingthe Code E-9
TestingData E-11

Xi

Appendix F Using the SRTool Utility
Introduction F-1
Installing and Running SRTool. F-2
Initialization. i F-2
The User Interface............... F-5
PCL Status Readback F-10
PJL Status Readback F-13
PCL Command Macroscvunn... F-14
PJL Command Macros F-17
OptioNSo i e F-18

Appendix G Kerning Information
Introduction L G-1
PairKerning.............. G-2
Sector Kerning. G-3
Track Kerning G-6

Appendix H HP MSL Character Number Table

Index

Xii

Introduction

Contents

How to Use This Manual 1-1
Manual Organization........................ 1-1
Manual Terms and Conventions 1-6
Using the Examples......................... 1-6

Differences Between the PCL 4 and PCL 5 Printers .. 1-7
Additional Laserdet 4 Features 1-10

How to Use This
Manual

Manual Organization

Note l'a

This manual is designed for software developers as a com-
plementary document to the PCL 5 Printer Language Tech-
nical Reference Manual. While the Technical Reference
Manual provides an authoritative description of each PCL
printer language command and its syntax and operation,
this manual provides more of a tutorial with examples
that illustrate how to use PCL commands in the design of
LaserJet-compatible software.

Each chapter contains a discussion of features related to a
specific application and provides examples to illustrate the
concepts. Examples stand out easily and use a step-by-step
approach to explain the commands.

Some printer features are simple to grasp and require little
explanation while others require several pages of explana-
tions and examples. Wherever possible, examples are de-
signed to closely match situations that you will experience
as a software developer.

Since this is primarily a PCL 5 printer document, all exam-
ples apply to the PCL 5 Laserdet printers (Laserdet III,
IIIP, ITID, IIISi, 4). Other Laserdet printers may or may
not support particular features. Check Appendix A for fea-
ture support across the entire LaserdJet printer family.

Chapter 1. Introduction

This chapter gives a brief overview of each section of the
manual. Also included is a general discussion of how exam-
ples are presented. In addition, there is a brief description
of the major PCL 5 LaserdJet printer features to give you an
idea of new ways to enhance software applications, espe-
cially if you have written LaserdJet software in the past.

Chapter 2. Setting Up a Print Job

This chapter describes the most effective way to begin a
print job, especially when multiple users will be using the

Introduction 1- 1

1- 2 Introduction

printer. The “print environment” and the reset feature are
discussed in detail, along with discussions about printing
multiple copies and memory usage. Printer Job Language
(PJL) is also discussed as it pertains to setting up a print
job.

Chapter 3. Page Setup

This chapter expands the job setup discussion and explains
page formatting. Features that can be changed from page
to page are covered, such as page orientation, margins,
page size, page source, print direction, and logical pages.

Chapter 4. Cursor Positioning

This chapter discusses the Current Active Position (CAP)
and the various ways to position the cursor on the page. It
gives examples for placing text at the edges of the page and
explains the push/pop feature that allows you to store the
Current Active Position.

Chapter 5. Using Fonts

This chapter covers selecting and managing fonts and also
explains font applications such as justification, adjusting
line spacing, and accessing special characters.

Chapter 6. AutoFont Support

This chapter discusses integrating LaserdJet font metrics
support into software applications. It explains the use of
tools available to help you add enhanced font metrics sup-
port to your application. The Tagged Font Metric (TFM)
specifications are also included in this chapter.

Chapter 7. Intellifont Integration

Chapter 7 discusses adding the Intellifont font scaling tech-
nology to your application. The benefits of adding Intellifont
are discussed, along with the integration options and avail-
able tools for incorporating Intellifont. The HP Font In-
staller utility is also covered regarding its role in Intellifont
integration.

Chapter 8. AutoFont Support for TrueType

This chapter supplements the Chapter 6 AutoFont Support
discussion by including TFM tag and development informa-
tion for generating TFM files from TrueType typefaces.

Chapter 9. Raster Graphics

This chapter explores the Raster Graphics System, an im-
proved method of printing raster graphics that provides for
more efficient raster files; enhancements include the raster
height and width commands, a Y offset command, and four
raster data compression modes.

Chapter 10. Vector Graphics

This chapter covers the HP-GL/2 vector graphics capabili-
ties of the PCL 5 LaserdJet printers, and gives guidance for
when to use vector graphics instead of raster graphics.

Chapter 11. The Print Model

This chapter discusses the Print Model, which allows appli-
cations to fill images, rectangles and fonts with shades and
patterns. Using the Print Model, the printer can print spe-
cial effects, including composite images; these effects are
demonstrated in detail. Control over the layering of images
is determined by the printer’s transparency modes, which
are also demonstrated.

Chapter 12. Macros

This chapter elaborates on macros, a powerful LaserJet
printer feature that is particularly useful for electronic
forms applications. Topics discussed include when to use
macros, how they are used, and pertinent macro examples.

Chapter 13. Tips for Efficient Programming

This chapter offers guidance for optimizing printer perform-
ance. As in most programming languages, there is usually
more than one way to perform a particular function. This
chapter helps you enhance your Laserdet software or

Introduction 1- 3

1- 4 Introduction

printer driver by giving you some hints as to how to imple-
ment certain features.

Chapter 14. Common Problems and Their Solutions

This chapter contains categorized answers to common PCL
programming problems. Look through this chapter for in-
sights into potential problems before you begin coding or
when you are trying to solve an existing problem.

Appendix A. LaserJet Printer Features & Compatibility

Although all LaserJet printers have many features in com-
mon, this appendix clarifies the feature differences be-
tween, for example, the Laserdet series II and the PCL 5
Laserdet printers.

Appendix B. Programming Examples

Hewlett-Packard provides sample programs that demon-
strate several features of the PCL 5 LaserdJet printers. The
programs are written in the C language with both the
source code and executable code included on disk. This ap-
pendix shows illustrations of the samples that these pro-
grams print, along with a short explanation of what each
program demonstrates.

Appendix C. Integrating the Rambo Utility

This appendix discusses adding the Rambo utility to your
application for creating both “bound” and “unbound” scal-
able typeface files that can be downloaded to the PCL 5
LaserdJet printers.

Appendix D. Using the BUILDSYM Utility

Appendix D discusses the BUILDSYM utility, which makes
it easy to create customized symbol sets for your applica-
tions (for the HP Laserdet IIIP and Laserdet 4 printers).

Appendix E. Using the FASST Utility

The FASST utility provides optimal raster data compres-
sion and makes it easy to add this functionality to your
software.

Appendix F. Using the SRTool Utility

Appendix F explains how to use the SRTool utility to send
PCL escape sequences and PJL. commands to the Laserdet
4 printer. SRTool is designed for use as a development tool
for adding PCL and PJL status readback to your applica-
tions.

Appendix G. Kerning Information

This appendix explains sector kerning, track kerning, and
pair kerning. It is provided as background information for
the kerning tags discussed in Chapter 6.

Appendix H. HP MSL List

The HP MSL list is used for cross-referencing Agfa (CG)
character numbers with HP Master Symbol List (HP MSL)
character numbers. This appendix is useful when using the
BUILDSYM utility.

Introduction 1- 5

Manual Terms and
Conventions

Using the Examples

1- 6 Introduction

The PCL Printer Language consists of a set of control codes
and escape sequences that are used to control the LaserdJet
printers. The PCL Printer Language syntax is described in
detail in the PCL 5 Printer Language Technical Reference
Manual.

Throughout this developer’s guide, PCL escape sequences
are shown in bold 10-point type using a font that allows you
to easily distinguish between the lower-case L (£) and the
number 1. Likewise, the zero character (¢) contains a slash
while the upper-case letter O does not. The escape charac-
ter (ASCII 27) is represented as “E ”.

Software developers use several different programming lan-
guages to send escape sequences to the LaserdJet printers.
Since there are a variety of languages used, almost all ex-
amples are given in a “generic” format instead of in a spe-
cific programming language. However, there are some cases
where it helps tremendously to see how a feature is imple-
mented with a specific programming language. HP provides
some program examples on disk that are coded in the C Pro-
gramming Language, including both source code and ex-
ecutable code.

To help communicate the logic behind many of the program-
ming decisions, the examples in this manual include com-
ments that provide insight into the reasoning behind the
commands used.

Note l'a

These examples show commands on separate lines for
clarity—in reality, printer commands should not be sent
separately, but all in one string. For example:

EcEEc &L 1XEc& L 2AEc& 00 &L 2EEc(8UEC(s1p14v0s3b4148T
Also note that the # parameter listed in many of the exam-
ples indicates an ASCII value for the value chosen, not the
hexadecimal equivalent.

Wherever possible, examples contain cross-references to
other related examples in the book. For instance, a raster
graphics example may contain cursor positioning com-
mands for positioning the graphic image on the page that
may be of help to someone learning cursor positioning.

Differences
Between the

PCL 4 and PCL5
Printers

This section provides brief descriptions of the major en-
hancements that PCL 5 provides to the PCL Printer Lan-
guage. Laserdet 4 features are discussed in the section that
follows this one. See Appendix A, or the PCL 5 Comparison
Guide, for feature differences between the PCL 5 printers.

Scalable Fonts

The PCL 5 LaserdJet printers provide font scaling from .25
point to 999.75 point, in quarter-point increments. All PCL
5 printers contain the scalable CG Times and Univers type-
faces in four treatments (and some contain even more type-
faces); additional typefaces can be downloaded to the
printer or accessed by way of scalable typeface cartridges.

AutoFont Support (TFM Files)

AutoFont Support provides developers with an efficient
method of reading Laserdet font metrics, for PCL 4 and
PCL 5 devices; one driver can be written to cover all Laser-
Jet printer fonts, eliminating the need to develop new driv-
ers for every new font product. TFM files are distributed by

Introduction 1- 7

1- 8 Introduction

HP for internal Laserdet printer fonts and are included as
AutoFont Support disks with purchased font products.

HP-GL/2 Functionality

PCL 5 incorporates HP-GL/2 functionality that allows the
printing of HP-GL/2 vector graphics files. The HP-GL/2 im-
plementation available in PCL 5 LaserdJet printers provides
features not available in other HP-GL devices. (For exam-
ple, access to high-quality bitmapped and scalable fonts, as
well as use of PCL fill patterns.) Raster graphics and vector
graphics, as well as standard PCL text, can be printed on
the same page, providing a high degree of compatibility
with many existing HP-GL/2 applications.

The Laserdet 4 printer adds even more HP-GL/2 features,
including support for bezier curves, another fill type for
filling polygons (non-zero winding fill), and PCL-compatible
label origin. In addition, the LaserdJet 4 printer, unlike the
other PCL 5 printers, allows the use of HP-GL/2 commands
in macros.

Multiple Print Directions

The print direction can be specified as either 0, 90, 180, or
270 degrees for applications that require multiple print di-
rections, for both text and graphics, on a single page.

Raster Data Compression

The PCL 5 Laserdet printers have up to four raster data
compression modes to help increase performance and mini-
mize disk space requirements for graphics-intensive applica-
tions. The HP-developed FASST utility is provided
(Appendix E) to help your application optimize the raster
data sent to each LaserdJet printer.

Print Model

The Print Model feature allows graphic images (including
fonts) to be filled with shades of gray or patterns. A com-
mon use of this capability is for the printing of reverse type
(white letters on a black background) and shaded or pattern-
filled fonts. Another use is for creating special effects with
images by filling them with patterns or for overlaying multi-
ple images.

Compressed Fonts (Bitmaps)

The PCL 5 Laserdet printers support font compression.
(Font compression is discussed in the PCL 5 Printer Lan-
guage Technical Reference Manual.)

Macro Cartridge Support

With the PCL 5 Laserdet printers, cartridges containing
macros can be plugged into the printer’s font cartridge slots
for applications requiring quick access of forms, logos, letter-
head, and frequently used graphics. (See Chapter 12 for
more information about macro cartridges.)

PJL Support

The Laserdet IIISi, PaintJet XL.300, and LaserdJet 4 print-
ers offer various levels of support for Hewlett-Packard’s
Printer Job Language (PJL). The Laserdet IIISi and
PaintJet XI.300 printers provide base-level PJL support,
which mainly features printer language switching. The
LaserdJet 4 printer offers a more extensive set of PJL fea-
tures, including status readback and the ability to set the
control panel from a remote location. PJL is discussed in
Chapter 2 and Appendix F of this manual, and in the PJL
Technical Reference Manual.

Introduction 1- 9

Additional
LaserJet 4 Features

1- 10 Introduction

The LaserJet 4 printer adds several features to the existing
PCL 5 feature set. Some of the significant LaserdJet 4 en-
hancements are listed below. See Appendix A for a compari-
son of the differences in support for the various PCL 5
Laserdet printer features.

» Variable Resolution—the LaserdJet 4 printer offers
resolutions of both 600 and 300 dots per inch. Text and
graphics are supported at both resolutions.

* PJL Support—the Laserdet 4 printer supports 18 PJL
commands, providing capabilities such as status
readback, remote control panel operation, control over
displayed messages, language switching, and more. (This
manual provides basic PJL information; see the PJL
Technical Reference Manual for detailed information.)

* Additional Resident Typefaces—the LaserJet 4
printer comes standard with many scalable typefaces,
including various treatments of CG Times, Univers, CG
Omega, Clarendon Condensed, Coronet, Antique Olive,
Garamond, Albertus, Arial, and Times New Roman.

» Bezier Curves—additional HP-GL/2 features include
support for bezier curves, another fill type for filling
polygons (non-zero winding fill), and PCL-compatible
label origin. Like the LaserdJet IIIP printer, the Laserdet
4 printer supports user-defined patterns for screened
vectors and for filling polygons.

* Units of Measure command—instead of using dots as
a unit of measurement, the Laserdet 4 printer offers the
Unit of Measure command, which affects all “dot” moves.
This command allows you to select a PCL Unit size in
specified increments from 96 to 7200 units/inch.

* Number of Copies—like the Laserdet IIISi printer, the
LaserdJet 4 allows the number of copies to be set to any
number from 1 to 32767.

» Page Size—the Laserdet 4 printer supports the B5
envelope size, along with four other envelope sizes and
four paper sizes.

Setting Up A Print Job

Contents

Introduction 2-1
Printer Job Language (PJL). 2-1
Brief Overview of the Laserdet Print File Structure .. 2-3
PJLPrinters......... 2-3
Non-PJL Printers. 2-6
The Print Environment 2-7
OVeIVIEW. . ottt e e e 2-7
Changing the Print Environment.............. 2-9
Reverting to Environment Default Values. 2-11
Laserdet JobSetup............................ 2-13
Job Setup for Non-PJL Printers 2-13
Job Setup for the Laserdet IIISi Printer. 2-16
Job Setup for the LaserdJet 4 Printer 2-22
Making Copies of thedob....................... 2-30
Laserdet IIISi Job Setup Commands 2-31
LaserJet IIISi Job Offset. 2-31
Laserdet IIISi Output Bin Selection........... 2-32
Memory Usageccoiiiiiiinnnnnn... 2-33
Page Protection (Error 21)................... 2-33
Page Protection for the Laserdet 4 Printer. 2-34
PJL and Perishable Data.................... 2-34

Freeing Memory for Fonts, Macros, Graphics ... 2-35
Chapter Summary 2-37

Introduction

At the beginning of every print job, there are some basic
setup commands that must be issued before sending print
data to Laserdet printers. This chapter helps you set up
your print job correctly, so that you can minimize surprises
and maximize compatibility with other applications that
may be running on the same workstation or network. Along
with some explanation of the reasoning behind the proper
way of setting up a print job, this chapter provides some ex-
amples you can use as a template, or at least a guide, for de-
veloping your applications.

The first part of the chapter gives you a description of PJL,
the Printer Job Language supported by some PCL 5
printers, and an overview of the way Laserdet print jobs are
structured. Then the print environment is discussed as a
preparation for setting the printer to a desired state. The
remaining portion focuses on job setup, including discussion
of two LaserdJet I1ISi printer features (job offset and output
bin selection). In addition, this chapter provides information
on memory usage and avoiding print overrun using the
page protection feature.

Printer
Job Language
(PJL)

With the widespread use of both PCL printer language

and PostScript on networks, the need for programmatic
language switching is very important. Manually switching
from one language to another using control panel settings is
not an optimal solution in most cases, since several

users are usually involved and there is usually a distance
between the users and the printer.

In order to provide system language switching, the HP
Laserdet IIISi and Laserdet 4 printers have a Printer Job
Language that resides logically above the PCL and Post-
Script languages. The base set of PJL. commands, supported
by the Laserdet IIISi printer, allows application software to
easily and reliably switch between PCL and PostScript.

Print Job Setup 2-1

2-2 Print Job Setup

Note l'a

Printer Job Language
(PJL)

PCL PostScript

LaserdJet Print Engine

Figure 2-1. PJL Resides Above PCL and PostScript

PJL is not limited to just language switching, however. The
Laserdet 4 implementation of PJL offers language switch-
ing plus a broader range of features including comprehen-
sive printer status readback capabilities and the

ability to manipulate control panel settings and create cus-
tom display messages. The PJL information in this chapter
is provided as a brief overview and to help you create well-
formed jobs—that is, jobs that print smoothly on single-
user workstations as well as multi-user networks.

If you are writing applications for PJL printers, read the
PJL information later in this chapter and study the exam-
ples for the Laserdet IIISi and LaserdJet 4 printers. For a
more detailed look at PJL, see the PJL Technical Reference
Manual.

Since PJL printers are frequently used on networks, it is
extremely important that jobs be well-formed. This chapter,
and the PJL Technical Reference Manual, provide examples
of many well-formed PJL jobs. Follow these examples to en-
sure smooth printer operation on all types of systems, from
single-user workstations to networks.

Brief Overview of
the LaserJet Print
File Structure

PJL Printers

Before we get into specific programming functions, let’s dis-
cuss the basic structure of a typical LaserdJet print job.
Since job structure for Laserdet printers supporting PJL is
different than for non-PJL printers, structure is discussed
separately.

For PJL printers (LaserJet 4 and LaserdJet IIISi), most jobs
are structured as follows:

PJL Commands

PCL Job Setup Commands
Page Setup Commands
Print Data

PJL Commands

Figure 2-2 illustrates the general structure of a LaserJet
print file using PJL and PCL:

PJL COMMANDS
PCL JOB SETUP COMMANDS

Page Setup Commands

Print Data

Page Setup Commands

Print Data

Page Setup Commands
Print Data
PJL COMMANDS

Figure 2-2. File Structure for PJL Printers

Print Job Setup 2-3

2-4 Print Job Setup

PJL Commands signal the beginning and end of the print
job and specify the printer language (personality) used to
print the job. There are three basic PJL commands that are
supported by all PJL printers (the Laserdet 4 printer has
many more PJL commands that offer many more functions,
however, the three commands listed below provide the
basis for generating well-formed print jobs):

* Universal Exit Language (UEL) Command:
Ec%-12345X

The UEL command’s function is to transfer control to
PJL. The command should be used at the very beginning
and end of every PJL job. For the UEL command at the
beginning of the job, the X at the end of the command
must always be immediately followed by another PJL
command (or the @PJL command prefix). There can be
no spaces or characters between the X and the @ that
begins the next command. On the other hand, the UEL
command at the end of the job is the final part of the job
and does not require anything to follow it.

« ENTER Command:
@PJL ENTER LANGUAGE = personality

This command selects the printer language to be used.
The command line always ends with a required line feed
character (<LF>). (The line feed character can be
immediately preceded by a carriage return character
[<CR>].)

e COMMENT Command:
@PJL COMMENT words

The COMMENT command allows you to add comments
to your PJL code. This command also ends with a
required line feed (<LF>) character. (The line feed
character can be immediately preceded by a carriage
return character [<CR>].)

Note l'a

Note l'a

Most of the examples in this document begin with the ? E
reset command. Software developed for the LaserdJet I1ISi
and LaserdJet 4 printers should have PJL commands before
and after the EcE commands that precede and succeed the
job. The examples in this chapter for the LaserdJet II1ISi and
LaserdJet 4 printers demonstrate how these commands are
properly used. For more PJL information, consult the PJL
Technical Reference Manual.

PCL Job setup commands usually control the output of the
entire print job and are grouped together at the beginning
of a print file. They include functions such as reset and
selecting the number of copies.

Page setup commands are associated with either a single
page or with groups of pages. They include functions such
as orientation, line spacing or VMI (vertical motion index),
paper size, paper length, paper source, margins and text

length.

Print data is the data that the user wants to print on the
page, along with commands that select fonts, call macros,
and position the data. Included with the document data are
also any downloaded fonts or macros, usually placed in the
print file immediately following the page setup commands.

After the first page, page setup commands do not need to

be sent unless a change from the previous page settings is
desired. For example, if the top margin is set at the begin-
ning of a print job, it is not necessary to send another top
margin command unless you need to change the top margin.

Print Job Setup 2-5

Non-PJL Printers For non-PJL printers, jobs are structured the same as PJL
printers, only without the PJL. commands at the beginning
and end of the job.

» PCL Job Setup Commands
» Page Setup Commands
* Print Data

Figure 2-3 illustrates the general structure of a LaserJet
print file for printers without PJL:

PCL JOB SETUP COMMANDS

Page Setup Commands

Print Data

Page Setup Commands

Print Data

Page Setup Commands

Print Data

Figure 2-3. File Structure for Non-PJL Printers

2-6 Print Job Setup

The Print
Environment

Overview

Before your application begins printing, many printer fea-
tures may have been set from a prior application or from
someone changing control panel settings. These feature
settings are usually not the same as those desired for your
application.

Whatever the current settings, your software application
must be able to set the LaserdJet printer to a desired state to
avoid problems. If this is not done, and the printer’s
features are set differently than what the application
“expects,” problems can occur. For example, if the printer is
being used by several people and the previous user sets the
control panel (or sends a PJL. DEFAULT COPIES com-
mand) to print 65 copies of a job, your application will also
print 65 copies (unless you take the measures we will dis-
cuss to prevent previous jobs or control panel settings from
interfering).

At any time during printer operation, the printer’s current
feature settings are referred to collectively as the print envi-
ronment. The printer constantly maintains five different
print environments:

* Factory Default Environment—the Factory Default
Environment is the set of default features that were
programmed into the printer when it was built. The
print environment settings are the same as the Factory
Default Environment when the printer is first powered
on before the operator control panel settings are changed
or any printer commands are sent from an application.
Any of the Factory Default environment settings can be
overridden using either the control panel keys, the PJL
SET command, or printer language commands. The print
environment settings revert to the Factory Default
Environment when a RESET MENU is performed from
the control panel or when the PJL INITIALIZE
command is received.

Print Job Setup 2-7

2-8 Print Job Setup

User Default Environment—the User Default
Environment contains the control panel settings. The
User Default Environment settings are modified when
the control panel settings are changed or when the PJL
DEFAULT command is used. The User Default
Environment reverts to the Factory Default values when
a RESET MENU or PJL INITIALIZE command occurs.

PJL Current Environment (PJL printers only)—at the
beginning of a PJL job, the PJL. Current Environment is
the same as the User Default Environment. Once PJL is
entered, the PJL Current Environment is modified using
the PJL SET command. Features set using the SET
command are active for the duration of the PJL job. (If
the PJL JOB command is used, the PJL job ends as soon
as the printer receives the EOJ command; if the JOB
command is not used, the PJL job ends when the next
UEL command is encountered.) The PJL Current
Environment feature settings override the User Default
(control panel) settings, which in turn are overridden by
printer language commands.

Modified Print Environment—at the beginning of a
PCL job, the PCL reset (5cE) causes the PJL Current
Environment features to be loaded into the Modified
Print Environment (for non-PJL printers, the User
Default Environment features are loaded). The Modified
Print Environment settings are changed using printer
language commands, such as PCL commands.

Overlay Print Environment—the overlay print
environment is active whenever an automatic macro
overlay is enabled. Once the macro overlay is finished,
the Modified Print Environment is again active.

A
Note l'a

The PCL Comparison Guide lists the features contained in
each print environment for each HP LaserdJet printer.

Changing the
Print Environment

It helps to think of the print environment as a hierarchical
structure, with the Factory Default settings being overrid-
den by any control panel settings or PJL. DEFAULT com-
mands, creating the User Default Environment. For PJL
printers, PJL SET commands override the User Default
environment settings, creating the PJL Current Environ-
ment. Printer commands sent by an application override
the User Default and PJL Current Environments, creating
the Modified Print Environment. In those cases when the
automatic macro overlay feature is enabled, then the over-
lay environment overrides the Modified Print Environment.

Any feature that hasn’t been set by the application defaults
to the PJL Current Environment value (if any have been
set using the PJL. SET command). Any feature that hasn’t
been set using the PJL. SET command defaults to the User
Default (control panel) value. For example, say the user
default setting for the number of copies is 1, and a user sets
the number of copies to 6 from the control panel. If the
user’s application doesn’t send a command to set the num-
ber of copies, the printer will print 6 copies of the next print
job.

Print Job Setup 2-9

Changing Environment Settings

Factory
Default

User

Default (PJL Printers Only)

Modified
Print

Macro
Overlay

Environment

PJL Environment

Current
Environment

Environment

Printer Language

Environment

Control Panel
@PJL DEFAULT

Commands

@PJL SET

PCL Macro
Commands

Figure 2-4. Changing Environment Settings

2-10 Print Job Setup

Reverting to the
Print Environment
Default Values

Resets cause the printer to default to its environment set-
tings. Depending on the type of reset performed, the fea-
tures default to either the Factory Default Environment,
the User Default Environment, or the PJL Current Environ-
ment.

Control Panel Reset Menu or PJL INITIALIZE—press-
ing the Reset Menu key on the control panel (until 09 RE-
SET displays) or sending the PJL INITTIALIZE command
resets the print environment to the Factory Default Envi-
ronment; it erases cached fonts and temporary downloaded
fonts and macros, without affecting the configuration set-
tings.

Power Cycling the Printer—switching the printer power
off erases perishable data, including all macros and down-
loaded, scaled or rotated fonts. Switching the printer power
on resets the printer to the User Default Environment.

Control Panel Reset—resetting the printer from the control
panel (07 RESET) resets the printer to the User Default En-
vironment and erases any temporary downloaded fonts and
macros, as well as any cached fonts, from printer memory.
Any data that is stored in the print buffer is erased without
being printed.

PJL RESET, JOB, EOJ, or UEL commands—sending one
of these commands to the printer resets the printer to the
User Default Environment and erases any cached fonts and
any temporary macros or temporary downloaded fonts.
These commands perform the same function as the control
panel reset, except with these commands the printer prints
any data that is stored in the print buffer before clearing it.

EcE Reset, Language Reset, or PJL ENTER commands—
the EcE reset, or any other printer language reset, and the
PJL ENTER command default the print environment to the
PJL Current Environment. The PJL Current Environment
settings remain in effect for the duration of the PJL job.

Print Job Setup 2-11

UEL Command (within a PJL JOB)—when the Laser-
Jet 4 printer receives a UEL command after it receives a
JOB command (but before the next EOJ command), the
print

environment defaults to the PJL Current Environment set-
tings. When the EOJ is received, the print environment
defaults to the User Default Environment settings.

Reverting to Default Environments

End of
Macro
Language Reset
@PJL ENTER
Power-on UEL Command *
Control Panel Reset
Implicit Language Switch
UEL Command ** Macro
@PJL RESET
@PJL JOB/EOJ 0_ver|ay
Environment
Control Panel Modified
GPUL INTIALZE * print
PJL Environment
l Current
Environment
Dlejfsael.:lt (PJL Printers Only)
Environment
Factory
Default

Environment

* When located between a JOB command and its associated EOJ command.
** When NOT located between a JOB command and its associated EOJ command.
*** Sets user default environment and PJL current variables to factory defaults.

Figure 2-5. Reverting to Default Environment Settings

2-12 Print Job Setup

LaserJet Job Setup

Job Setup for
Non-PJL Printers

Job setup for the Laserdet printers involves four major
functions:

» Resetting the printer at the beginning of the job
» Setting the printer features to a desired state

* Sending the print data

» Resetting the printer at the end of the job

Since these functions are accomplished somewhat differ-
ently for different printers, this section divides the PCL 5
Laserdet printers into three groups for this discussion:

» Job Setup for Non-PJL Printers
» Job Setup for the LaserdJet I1ISi Printer

* Job Setup for the Laserdet 4 and other printers that
support the PJL. SET command

The job setup procedure for non-PJL printers, including
the Laserdet III, ITID, and IIIP, consists of the following
four steps:

1) Reset the printer at the beginning of the job using the
EcE reset.

2) Send printer commands to set the printer to a desired
state and override any environment settings that could
have been set using the control panel.

If your application will not allow selection of a certain
feature that is also selectable from the control panel, do not
send a command to set that feature. It will prevent the user
from selecting that feature from the control panel because
the programmatic commands always override the control
panel settings.

For example, if your application doesn’t allow the user to se-
lect the number of printed copies, but it does send the num-
ber of copies escape sequence (Ec&£1X), then the user is
locked out from the number of copies feature. (He can’t se-
lect it from the application and the application escape
sequence overrides the number of copies setting on the

Print Job Setup 2-13

2-14 Print Job Setup

control panel.) In this case, the application should either
implement the feature by allowing users to select the
feature or should refrain from sending the number of
copies command.

Below is a list of environment variables that you should con-
sider making available to users. Each is selectable from the
control panel and automatically defaults to the control
panel setting with the &E command. The PCL commands
listed in the table below set the environment variables to
the value specified (for the duration of the PCL job).

Environment Variable PCL
Description Command
Number of Copies Ec&L#X
Duplex printing (duplex printers only)| Ec&L#S
Tray/Manual Feed (paper source) Ec&L#H
Paper (Page Size) Ec&LHA
Orientation (portrait, landscape) Ec&L#HO
Form Length (Number of lines per Ec&L#C or Ec&L#D
page—VMI)
Symbol Set E(ID
Selected Font Ec(SH#p#h#tvHsHDHAT)
3) Send the print data.

4) Reset the printer at the end of the job.

The following example demonstrates the job setup process
for non-PJL printers.

Example:
Job Setup
Without PJL

Note l'a

This example shows a sure way for a full-featured applica-
tion to set non-PJL Laserdet printers to a desired state.
This solution is for the Laserdet III, IIID, and IIIP printers
and PCL 4 Laserdet printers.

Some of the commands listed in this example are page
setup commands and are covered in more detail in the
following chapter. They are used in this example because
they are part of the print job setup process (the page setup
commands for the first page are grouped together at the
beginning of the print file).

JOB SETUP COMMANDS

EE Reset printer to the User Default
environment.

Ec&I13X Set the number of copies to 3.

Ec&1dS Select single-sided printing.

PAGE SETUP COMMANDS

Ec&I1H Select paper tray as paper source.

Ec&126A Select A4-size paper (210 x 297mm).

Ec&100 Set the orientation to portrait.

Ec&18C Set the vertical motion index (VMI)
to 6 lines per inch.

PRINT DATA

E(8U Set the symbol set to Roman-8.

Ec(s@pldh12vPs@b3T Select fixed-spaced, 10-pitch, 12-pt.,
upright, medium, Courier font.

PRINT DATA Send print data.

EE Reset printer at end of print job.
This helps prevent problems for the
following job.

Print Job Setup 2-15

Note l'a

Job Setup for the
LaserJet IlISi Printer

2-16 Print Job Setup

Resets should be used at the beginning and end of the
job, but they are not recommended anywhere else in the
job. Besides resetting features, these commands eject the
current page if they are received after printable data.

For another example of a job setup string, see the General
Print Job Initialization discussion in Chapter 13.

Job setup for the LaserdJet ITISi printer is similar to that for
non-PJL printers, however the Laserdet I1ISi printer sup-
ports PJL language switching and has some extra job setup
features that are not found in the other PCL 5 printers (job
offset and output bin selection). Laserdet IIISi print jobs
should be structured as follows:

1) Send a UEL command (Ec%-12345X) at the beginning of
the job to give control to PJL.

2) Use the PJL ENTER LANGUAGE command to enter the
desired printer language.

3) Reset the printer using? E reset before sending PCL
commands.

4) Send printer commands to override any environment set-
tings that could have been set using the control panel
and to set the printer to a desired state.

If your application will not allow selection of a certain fea-
ture that is selectable from the control panel, do not send a
command to set that feature. It will prevent the user from
selecting that feature from the control panel because
programmatic commands always override the control panel
settings.

For example, if your application doesn’t allow the user to se-
lect the number of printed copies, but it does send the num-
ber of copies escape sequence (Ec&11X), then the user is
locked out from the number of copies feature. (He can’t se-
lect it from the application and the application escape
sequence overrides the number of copies setting on the

control panel.) Instead, the application should either imple-
ment the feature by allowing users to select the feature or
should refrain from sending the number of copies command.

Below is a list of environment variables that you should con-
sider controlling with printer commands. Each is selectable
from the control panel and automatically defaults

to the control panel setting with the &E reset or UEL
command.

Environment Variable PCL
Description Command
Number of Copies Ec&L#X
Duplex printing Ec&L#S

Tray/Manual Feed (paper source) Ec&L#H

Paper (Page Size) Ec&L#A

Orientation (portrait, landscape) Ec&L#0

Output Bin Selection Ec&L#G

Job Offset Ec&L#T

Form Length (Number of lines per | Ec&L#C or Ec&L#D
page—VMI)

Symbol Set Ec(ID
Selected Font Ec(s#p#h#vis#b#T
5) Send the print data.

6) Reset the printer at the end of the job using EcE followed
by the UEL command (Ec%-12345X).

The following example demonstrates job setup for the
Laserdet IIISi printer.

Print Job Setup 2-17

Example: This example shows commands for setting the LaserdJet
Job Setup for the ITISi printer to a desired state. The approach is almost the
F Dy same as with the non-PJL printers, with the exception of
LaserJet llISi Printer the UEL and PJL. ENTER LANGUAGE commands before
the job and the UEL command at the end. Note that in all
PJL jobs there should be no space between the X at the
end of the UEL command and the @ that begins the next
command.

PJL COMMANDS

Ec%-12345X@PJL <CR><LF> Universal Exit Language (UEL)

@PJL ENTER LANGUAGE = PCL <CR><LF> command acts as a reset and
gives control to PJL. The ENTER
command gives control to the PCL
printer language.

JOB SETUP COMMANDS

EcE Reset printer.

Ec&01X Set the number of copies to 1.

Ec&L1T Enable job offset so that each PCL
job is physically offset from the pre-
ceding job.

E&L1G Select the upper output bin.

PAGE SETUP COMMANDS

Ec&L1H Select paper tray as paper source.
Ec&L2A Select letter-size paper.

Ec&L00 Set the orientation to portrait.
Ec&28C Set the vertical motion index (VMI)

to 6 lines per inch.

2-18 Print Job Setup

PRINT DATA

Ec(@U
Ec(s1p14v1sdb4168T

PRINT DATA
EcE

PJL COMMAND

Ec%-12345X

Note l'a

Set the symbol set to ASCII.

Select a proportional, 14-point,
italic, medium, Antique Olive font.

Send print data.

Reset printer at end of print job.
This restores the printer to the
User Default Environment for the
next print job, helping to prevent
problems for the following job.

Universal Exit Language (UEL)
command ends the job and returns
control to PJL.

UEL commands and resets should be used at the beginning
and end of the job, but they are not recommended anywhere
else in the job. Besides resetting features, these

commands eject the current page if they are received after
printable data.

Print Job Setup 2-19

Example:

Job Setup for the
LaserJet llISi Printer
Using Language
Switching

command.

PJL COMMANDS

Ec%-12345X@PJL <CR><LF>

@PJL ENTER LANGUAGE = PCL<CR><LF>

JOB SETUP COMMANDS

EcE
Ec&01X

PAGE SETUP COMMANDS

Ec&L1H
Ec&L2A
Ec&LJ0
Ec&28C

PRINT DATA
Ec(0U
Ec(s1p37viPs3b4148T

PRINT DATA

2-20 Print Job Setup

This example shows job setup commands for a LaserJet
ITISi print job that switches printer languages. Note that in
all PJL jobs there should be no space between the X at the
end of the UEL command and the @ that begins the next

The UEL command acts as a reset
and gives control to PJL. Note how
it is immediately followed by the
@ of the next PJL. command.

The ENTER command gives control
to the PCL printer language.

Reset the printer.

Set the number of copies to 1.

Select paper tray as paper source.
Select letter-size paper.
Set the orientation to portrait.

Set the vertical motion index (VMI)
to 6 lines per inch.

Set the symbol set to ASCII.

Select proportional, 37-point, up-
right, bold, Univers font.

Send print data.

EcEEc%-12345X Reset and UEL command to end
the PCL job and return control to
PJL.

PJL COMMANDS

Ec%-12345X@PJL <CR><LF>

@PJL. COMMENT End of PCL job <CR><LF>

@PJL. COMMENT Beginning of PostScript job <CR><LF>

@PJL ENTER LANGUAGE = POSTSCRIPT<CR><LF>

PRINT DATA

5 setlinewidth<CR> PostScript print data.
100 100 moveto<CR>

<EOT>

PJL COMMANDS

Ec%-12345X UEL command to end the job and
return control to PJL.

Print Job Setup 2-21

Job Setup for the
LaserJet 4 Printer

Note l'a

2-22 Print Job Setup

The Laserdet 4 printer, with its extensive PJL feature set
and status readback capabilities, allows you to request
printer status and set control panel features such as resolu-
tion enhancement (RET), page protection, and resolution.

The Laserdet 4 printer is the only LaserdJet printer capable
of status readback.

Listed below are two suggested approaches you can use to
programmatically set the Laserdet 4 printer to a desired
state (an example is included for each approach):

» Reset the printer to the User Default Environment or
PJL Current Environment and then send commands that
override any environment settings that could have been
set using the control panel or PJL.

» Reset the printer to the User Default Environment or
PJL Current Environment and then request status
information using the PJL and/or PCL status readback
commands. Then send the necessary commands to set
the printer to the desired state.

In both of these methods, the reset defaults all environment
variables to the User Default Environment or PJL

Current Environment.* Once a reset occurs, all that needs
to be done to achieve a desired state is to send commands to
override any undesirable settings caused by changes to the
control panel settings or changes made using the PJL SET
command. If the printer has status readback capability, the
application can first inquire the status and then send only
those commands that are necessary to achieve the desired
state.

* The UEL command resets the printer, causing the User
Default Environment values to take effect if no PJL JOB
command has been sent; the PJL Current Environment
values take effect if the printer has received a PJL JOB
command but hasn’t received the accompanying EOJ
command.

Note l'a

Follow the steps below for LaserdJet 4 job setup:

1) Send a UEL command (5c%-12345X) at the beginning of
the job to give control to PJL.

2) If status readback is enabled, use the PJL. INQUIRE com-
mand to request the status of environment variables.
Compare the returned status information with the de-
sired feature settings. If status readback is not enabled,
assume that none of the environment feature settings are
set as desired and set them using PJL SET or PCL
commands.

The PJL status readback commands allow you to request
the name of the printer, its configuration, and a list of
environment settings. The PCL status readback com-
mands allow you to request information on available
fonts, macros, user-defined patterns, and symbol sets.

In order to receive printer status, the application must be
equipped to handle bi-directional communications. The
hardware specification for adding this capability is avail-
able through the Hewlett-Packard Developers Support Pro-
gram. Contact your HP support representative for more
information.

Appendix A lists the PCL and PJL status readback com-
mands supported by the Laserdet 4 printer. Appendix F dis-
cusses using the SRTool utility for both PCL and PJL status
readback information. For more information on PJL status
readback, see the PJL Technical Reference Manual. For
more information on PCL status readback, see the

PCL 5 Printer Language Technical Reference Manual.

3) Use the PJL SET command to override any current set-
tings that would interfere with the way you want the job
processed.

Only use the PJL SET command to override features that
cannot be set using PCL. For the LaserdJet 4 printer,
these are: RET, PAGEPROTECT, RESOLUTION,

Print Job Setup 2-23

2-24 Print Job Setup

PERSONALITY, and TIMEOUT. (Since PERSONALITY
and TIMEOUT do not affect the printed output, do not
send these commands unless you have a specific need to
modify the timeout duration or default personality.) Use
PCL to set other features to a desired state.

4) Use the PJL ENTER LANGUAGE command to enter

PCL or another desired printer language.

5) Reset the printer using &E reset before sending PCL com-

mands.

6) Send printer commands to set the printer to a desired

state and to override any environment settings that could
have been set using the control panel.

If your application will not allow selection of a certain fea-
ture that is also selectable from the control panel, do not
send a command to set that feature. It will prevent the
user from selecting that feature from the control panel
because the programmatic commands always override

the control panel settings.

For example, if your application doesn’t allow the user to se-
lect orientation, but it does send the orientation escape se-
quence (Ec&L#0), then the user is locked out from the
orientation feature. (He can’t select it from the applica-

tion and the application escape sequence overrides the
orientation setting on the control panel.) Instead, the ap-
plication should either implement the feature by allowing
users to select the feature or should refrain from sending
the orientation command.

The following table lists environment variables that you
should consider controlling with printer commands. Each
is selectable from the control panel and/or with the PJL
SET command. These features automatically default to
either the control panel setting or the PJL Current Envi-
ronment setting when the EcE reset or UEL commands
are received (These features are also defaulted during
other PJL reset conditions such as when the printer re-
ceives the PJL RESET, JOB, or EOJ commands).

Environment Variable PCL PJL
Variable Description Command Command

COPIES Number of copies Ec&L#X @PJL SET COPIES *

PAPER Page size (letter, Ec&i#A | @PJL SET PAPER *
A4, legal, etc.)

ORIENTATION | Paper orientation Ec&i#0 | @PJL SET ORIENTATION *
(portrait, landscape)

FORM Number of lines per | Ec&{#C @PJL SET FORMLINES *
page (VMI) or Ec &L #

MANUAL FEED | Manual feed mode E&L#H | @PJL SET MANUALFEED *

RET Resolution None @PJL SET RET
Enhancement

PAGEPROTECT | Page protection None @PJL SET PAGEPROTECT
(prevents Error 21)

RESOLUTION Print resolution None @PJL SET RESOLUTION

PERSONALITY | Default printer None @PJL SET PERSONALITY**
language (PCL,
PostScript, etc.)

TIMEOUT I/O timeout None @PJL SET TIMEOUT **
duration

FONT SOURCE | Default PCL font Font @PJL SET FONTSOURCE *
source selection

FONT NUMBER | Default PCL font Font @PJL SET FONTNUMBER *
number selection

PITCH PCL font pitch Ec(s#H @PJL SET LPARM:PCL PITCH*

PTSIZE PCL point size Ec(s#V @PJL SET LPARM:PCL PTSIZE*

SYMSET PCL symbol set E(ID @PJL SET LPARM:PCL SYMSET*

* These PJL commands should only be used by spoolers and printer utilities. For other
applications, use the PCL command to modify the feature.
** Personality and timeout do not affect printed output. Only use these commands when it
is necessary to modify the timeout or default personality.

Print Job Setup 2-25

7) Send the print data.

8) Reset the printer at the end of the job using EcE followed
by the UEL command (as shown here): EcE?%-12345X.

The following two examples demonstrate job setup for the
Laserdet 4 printer. The first example uses status readback
and the second one does not.

Example:

Job Setup for the
LaserJet 4 Printer
Using Status
Readback

printer settings.

PJL COMMANDS

Ec%-12345X@PJL <CR><LF>

@PJL INQUIRE COPIES <CR><LF>

@PJL INQUIRE PAPER <CR><LF>

@PJL INQUIRE ORIENTATION <CR><LF>
@PJL INQUIRE FORMLINES <CR><LF>
@PJL INQUIRE MANUALFEED <CR><LF>
@PJL INQUIRE RET <CR><LF>

@PJL INQUIRE PAGEPROTECT <CR><LF>
@PJL INQUIRE RESOLUTION <CR><LF>

@PJL SET RESOLUTION = 600 <CR><LF>
@PJL SET PAGEPROTECT = ON <CR><LF>

2-26 Print Job Setup

The following example demonstrates how an application
can set the LaserdJet 4 printer to a desired state. This appli-
cation uses the PJL INQUIRE command to request status
information and the PJL SET command to modify some

Universal Exit Language (UEL)
command that acts as a reset and
gives control to PJL. Notice that the
X in the UEL command is immedi-
ately followed by the @ symbol of
the following PJL command or PJL
command prefix (as shown here).

Send PJL INQUIRE commands to
request the current status of envi-
ronment variables. Within a few
seconds, the status is returned to
the host computer. The application
can then compare the returned
status with the desired values for
each variable.

The returned status indicates that
several variables needed modifica-
tion in order to be set as desired. In
this example, status readback indi-
cates that just the RESOLUTION,
PAGEPROTECT, COPIES, PAPER,

@PJL ENTER LANUAGE = PCL <CR><LF>

JOB SETUP COMMANDS

EcE
Ec&01X
PAGE SETUP COMMANDS

Ec&L1H
Ec&L3A
Ec&L10
Ec&L8C
PRINT DATA

Ec(9U
Ec(s1p12vPstb4148T

PRINT DATA
EcE
PJL COMMAND

Ec%-12345X

and ORIENTATION values needed
to be modified. Use the PJL. SET
command to set those variables that
cannot be set using PCL (PAGE-
PROTECT and RESOLUTION).
Later in the setup, PCL commands
will be used to set the remaining
variables (COPIES, PAPER (page
size), ORIENTATION).

Enter the PCL printer language.

Reset printer.

Set the number of copies to 1.

Select paper tray as paper source.
Select legal-size paper.
Set the orientation to landscape.

Set the VMI to 6 lines per inch.

Set the symbol set to Windows.

Select proportional 12-point, up-
right, medium, Univers font.

Send print data.
Reset printer at end of PCL job.

Universal Exit Language (UEL)
command ends the job and returns
control to PJL.

Print Job Setup 2-27

Note "ﬂ UEL commands and resets should be used at the beginning
and end of the job, but they are not recommended anywhere
else in the job. Besides resetting features, these commands
eject the current page if they are received after printable

data.

Example: The following example demonstrates how an application
Job Setup for the can set a LaserdJet 4 printer to a desired state. Since this ex-
LaserJet 4 Printer ample uses no status readback, we assume that no features

Without Status
Readback

PJL COMMANDS

Ec%-12345X@PJL <CR><LF>

@PJL SET RET = ON <CR><LF>
@PJL SET PAGEPROTECT = ON <CR><LF>
@PJL SET RESOLUTION = 60¢ <CR><LF>

@PJL ENTER LANUAGE = PCL <CR><LF>

2-28 Print Job Setup

are already set as desired. Consequently, all features that
affect printed output must be set by the application.

The Universal Exit Language (UEL)
command acts as a reset and gives
control to PJL. The UEL command
must be followed immediately by a
PJL command or the PJL. command
prefix (as shown here), leaving no
spaces between the X that termi-
nates the UEL command and the @
that begins the PJL. command.

Since there is no status readback,
assume that all features need to be
set as desired. Use the PJL SET
command to set those variables
that cannot be set using PCL (RET,
PAGEPROTECT, RESOLUTION).
Use PCL to set the remaining vari-
ables (copies, page size, orientation,
text length and paper source).

Enter the PCL printer language.

JOB SETUP COMMANDS

EcE Reset printer.

Ec&01X Set the number of copies to 1.

PAGE SETUP COMMANDS

Ec&L1H Select paper tray as paper source.

Ec&L3A Select legal-size paper.

Ec&L10 Set the orientation to landscape.

Ec&18C Set the VMI to 6 lines per inch.

Ec&L66F Set the text length to 66 lines.

PRINT DATA

E(9U Set the symbol set to Windows.

Ec(s1p12vPsPb4119T Select 12-point, upright, medium,
CG Century Schoolbook font.

PRINT DATA Send print data.

EE Reset printer at end of PCL job.

PJL. COMMAND

Ec%-12345X Universal Exit Language (UEL)
command ends the job and returns
control to PJL.

.
Note "ﬂ UEL commands and resets should be used at the beginning

and end of the job, but they are not recommended anywhere
else in the job. Besides resetting features, these commands
gject the current page if received after printable data.

Print Job Setup 2-29

Making Copies
of the Job

2-30 Print Job Setup

Setting the number of copies is a job setup function since it
affects the entire print job. There are three methods of
printing multiple copies of a print job:

* Sending the number of copies command using Ec&£#X

» Sending the PJL SET COPIES command

* Sending the job the desired number of times

An analysis of each option follows:

Sending the number of copies command (Ec&{#X)—us-
ing this command, like using the PJL. SET command, is
easy for the programmer to implement and prints multiple
copies quickly. However, the printed output is not collated.
For example, sending a software request for five copies
(Ec&£5X) of a three-page job would print five copies of page
one followed by five copies of page two followed by five cop-
ies of page three. Applications that generally take a longer
time to print, as do many graphics applications, are better
suited for using the number of copies command for printing
multiple copies.

Sending the PJL SET COPIES command—this method pro-
vides the same uncollated results as the PCL number of cop-
ies command. However, the PJL SET COPIES command is
recommended for spooling applications, not for most applica-
tions that generate print data (spreadsheets, graphics pro-
grams, ete.). For most applications that generate print data,
use the PCL number of copies command instead. (To create
spooling applications for the Laserdet 4 printer, consult the
PJL Technical Reference Manual.)

Sending the Print Job Multiple Times—To print collated
copies, your application should print the output file the re-
quired number of times. This option provides correct-order
output to the user, but is extremely time-consuming and
memory-intensive for the CPU, is slower for the user, and is
I/O-intensive. This option is recommended for less I/O-inten-
sive applications, such as word processing, where users fre-
quently print multiple-page documents.

LaserJet llISi
Job Setup
Commands
LaserJet IlISi
Job Offset

Note l'a

Note l'a

The HP Laserdet IIISi printer has two job setup commands
that are not supported by any of the other PCL 5
LaserdJet printers. These commands are:

» Job Offset (also in LaserdJet 500 PLUS, LaserJet 2000)
* Output Bin Selection

These features are discussed below, with examples that
demonstrate their use.

In order to differentiate multiple print jobs in the standard
face-down output stacker, the Laserdet IIISi printer can be
instructed programmatically to physically offset print jobs
using the job offset (c&£1T) command. Receipt of the job off-
set command causes the printer exit rollers to shift 1/2-

inch relative to the previous job. This feature makes it eas-
ier for users to locate their output in the output bin.

The HP LaserdJet 500 PLUS and the LaserdJet 2000 printers
also support the job offset command. The LaserdJet 500
PLUS printer physically offsets jobs as does the LaserJet
I11ISi, and the Laserdet 2000 printer inserts a job separation
sheet (without a physical offset).

Because this is a PCL printer language command, Post-
Script jobs should not contain the command. However, print-
ers with the PostScript option can support this feature via
the control panel. When the “JOB OFFSET” variable is con-
figured to “ON”, the exit rollers are toggled 1/2-inch every
time a CTRL-D (or Ec%-12345X) is encountered.

The control panel job offset setting has no effect on PCL
jobs.

In your application, job offset should be a user-selectable op-
tion. When selected, the job offset command should be sent

Print Job Setup 2-31

Example:
LaserJet llISi
Job Offset

LaserJet llISi
Output Bin Selection

2-32 Print Job Setup

at the beginning of each job, following the printer reset com-
mand as shown in the following example.

Ec%-12345X@PJL <CR><LF>
@PJL ENTER LANGUAGE = PCL <CR><LF>

Send the UEL Command to give
control to PJL. (Note that there is no
space between the X at the end of
this command and the @ that begins
the next command.) Send the PJL
ENTER command to enter PCL.

EE Reset the printer.

Ec&I1T Set the job offset so that it toggles
between each PCL print job.

PRINT DATA Send PCL print data to the printer.

EcEEc%-12345X Reset the printer and send the UEL
Command to end the job.

The Laserdet IIISi printer supports two different output bin
selections. The default output bin is the top, 500-sheet, face-
down, correct-order output bin. The lower 50-sheet, face-up,
reverse-order output bin is also programmatically select-
able (send Ec&£1G to select the upper bin or &&£2G to
select the lower bin).

Selection of the lower output bin may be appropriate in sev-
eral instances. In anticipation of accessory paper handling
devices, such as stackers, collators, and other devices, lower
output bin selection allows users to take advantage of this
advanced functionality.

Unlike some of the other Laserdet printer models, the lower
output bin may not be selected by manually operating an
output bin selector knob. The lower output bin can be se-
lected only using the control panel or with printer com-
mands. Consider providing output bin selection as a user-
selectable option for your customers.

Memory Usage

Page Protection
(Error 21)

Note l'a

In the process of preparing a page for printing, LaserJet
printers process the print data in sectioned bands of the
page. Once the print engine starts, the page data for that
page must be rasterized at a rate sufficient to keep up with
the print engine. If the formatting for a particular page is
very complex, the image processor is sometimes unable to
keep up with the speed of the print engine and an Error 21
(print overrun) occurs.

In the PCL 5 Laserdet printers, print overruns can be
avoided by enabling PAGE PROTECT from the control
panel, or, for the LaserdJet 4 printer, using the PJL SET
PAGEPROTECT command. (Some PCL 5 printers may re-
quire additional memory to enable this feature. See your
printer user’s manual.) With the page protection mode se-
lected, the printer rasterizes the whole page before it begins
printing it, avoiding any possibility of a print overrun.

PCL 4 LaserdJet printers do not have this feature. For these
printers, the only way to correct an Error 21 is to reduce
the complexity of the page being formatted.

HP-GL/2 data is inherently complex to rasterize, so page
protection is recommended for HP-GL/2 jobs. If your appli-
cation uses HP-GL/2 commands, it is a good idea to recom-
mend the page protection feature of the PCL 5 LaserdJet
printers in your user documentation and through your
support services. However, for the Laserdet 4 printer, even
complex HP-GL/2 pages can print without page protection.
Recommend page protection for the LaserdJet 4 printer only
for those cases when Error 21 occurs.

Print Job Setup 2-33

Page Protection for
the LaserJet 4 Printer

PJL and
Perishable Data

2-34 Print Job Setup

Unlike the other PCL 5 Laserdet printers, which require
setting page protection from the control panel, the LaserJet
4 printer also allows you to enable or disable it using the
PJL SET or PJL. DEFAULT commands.

The Laserdet 4 printer allows you to set page protection for
different page sizes, and to set resolution to 600 dpi regard-
less of the installed memory. However, before passing the in-
coming job to the page description language, the printer
must analyze the memory requirements to see if it can
accommodate the requested page protection and resolution
settings. If there is not sufficient memory to satisfy the
request, the printer reconfigures itself to allow the job to
print, and posts a clearable warning message indicating the
change. Once the job has been passed to the page descrip-
tion language, resolution and page protection cannot be re-
configured until a job boundary has been detected.

In situations where there is not enough memory to print a
large raster image, the printer first tries to compress the im-
age without losing image data. If there is still not enough
memory, the printer uses a compression technique which ac-
tually eliminates some of the image data. This technique
usually allows the image to print acceptably, even though
some of the image data is lost. (If this happens, the printer
displays “W5 Image Adapt” on the control panel and sends
an unsolicited status message to the host.)

PJL allows applications to control many printer features
that were previously only controllable from the control
panel. Note, however, that some PJL commands reconfigure
the printer’s memory, erasing perishable data such as down-
loaded fonts, macros, and graphics. The following
commands cause perishable data to be erased if a change
from the current status occurs:

+ @PJL ENTER LANGUAGE
+ @PJL SET PAGEPROTECT
+ @PJL SET RESOLUTION

Freeing Memory for
Fonts, Macros, and
Graphics

Note l'a

In some applications, users download a large number of
fonts and macros to the printer. This is especially true in a
network situation. Since the printer has a limited amount
of memory, users may find that there isn’t enough memory
to download their entire job, causing an Error 20 (memory
overflow). When an out-of-memory condition occurs, the job
will not print as the user expects. (Users find this situation
frustrating since they must either clear the printer’s mem-
ory and re-issue the job or add more memory to their
printer.)

If the fonts and macros are downloaded with a “permanent”
status, then an EcE won’t clear them from memory; how-
ever, all fonts and macros are erased from memory when
the power is turned off (or when the page protection status,
resolution, or printer language is changed).

Your application can provide a simple way to clear perma-
nently downloaded fonts and/or macros from the printer.
Hewlett-Packard suggests a menu selection in software
applications for clearing all permanently downloaded fonts
or macros from memory. HP also recommends that the
user’s request for clearing the fonts or macros be answered
with a response asking them if they are sure they want to
clear all fonts and macros from the printer.

To clear all permanently downloaded fonts from memory;,
send the Ec*cfF command following the initial EcE reset com-
mand (but before any printable characters). To delete all
macros, send the Ec&f6X command.

Print Job Setup 2-35

Example:
Erasing Fonts
and Macros

Note l'a

2-36 Print Job Setup

This example shows how to erase downloadable fonts and
macros as part of the job setup process:

In this scenario, the user attempts to print a job and finds
an Error 20 preventing the job from printing successfully.
The application offers a menu feature that allows the user
to erase all downloaded fonts and macros. The user enters
YES in both menu fields that indicate the desire to erase
fonts and macros. The application, responding to the user’s
request, then asks if the user is sure of his/her intent and
warns that all downloaded fonts and macros will now be
erased. The user responds YES. The application then sends
the following commands to the printer.

This example shows how to avoid a memory overflow condi-
tion when the overflow is the result of too much previously
downloaded data. In conditions where the memory overflow
is due to the current job downloading too much data, the fol-
lowing example will still not prevent memory overflow.

EE Reset the printer. The following com-
mands override any control panel
settings that could be set
differently than desired (number
of copies, paper source, page size,
orientation, VMI, symbol set

and font).
Ec& 02X Set the number of copies to 2.
Ec&L1H Select paper source.
Ec&L3A Select legal-size paper (8.5" x 14").
Ec&L10 Set the orientation to landscape.
Ec&L6C Set the vertical motion index (VMI)
to 8 lines per inch.
E(8U Set the symbol set to Roman-8.

Ec(s1pl4vdsfb4191T Select a 14-point, upright, medium,

CG Times font.
Ec&L1e42F Set top margin to 1 line and text
length to 42 lines.
Ec*cOF Delete all soft fonts per user request.
Ec&f6X Delete all macros per user request.
PRINT DATA Send print data.
EE Reset printer at end of print job.

Chapter Summary Here are some hints that summarize the main points cov-
ered in this chapter:

* For PJL applications, use the PJL. UEL command to
begin and end each job. The UEL command at the
beginning of the job should be followed immediately by
the @ of the next PJL. command, for example:

?%-12345X@PJL. Comment **Job #1** <CR><LF>

* For PJL applications, use the PJLL ENTER LANGUAGE
= PCL command immediately before the (EcE) that
precedes the PCL print data. (See the Laserdet 4 and
LaserdJet IIISi examples in this chapter.)

* Send a programmatic reset ((cE) at the beginning and
end of PCL jobs, as shown in all of the examples in this
manual.

* Send printer commands to override any possibility of
unwanted feature settings due to the control panel (but
don’t send commands that override control panel
features unless your software allows the user to select
those features).

Print Job Setup 2-37

2-38 Print Job Setup

* For PJL printers, only use PJL. commands to set features

that cannot be set using PCL, such as PAGEPROTECT,
RET, and RESOLUTION. The PERSONALITY and
TIMEOUT variables, since they do not affect the printed
output, should not be set unless you specifically need to
change the default personality or timeout duration.

Remember that a language switch, change of page
protection status, or change of resolution erases
perishable data.

Consider offering your users the option of erasing
permanently downloaded fonts and/or macros by way of a
menu selection.

A
Note l'a

For a good example of a job setup string, see the General
Print Job Initialization discussion in Chapter 13.

Page Setup

Contents

Introduction. 3-1
Selecting a Paper Source 3-1
Selecting a Physical Page Size.................... 3-2
The Page Size Command 3-2
The Page Length Command. 3-3
The Actual Printable Area 3-4
Changing Orientation........................... 3-9
Print Direction 3-11
Managingthe Text Area 3-13
Controlling Top Margin 3-15
Establishing the Bottom Margin.............. 3-16
Perforation Skip for Print-and-Space Formatting 3-17
Controlling the Left Margin. 3-19
Controlling Right Margin. 3-20
Changing Character Spacing (HMI) 3-21

Modifying Line Spacing (VMID)................... 3-22

Introduction Page setup is a part of the job setup process and defines the
structure around which pages are formatted. While job con-
trol commands are usually sent at the beginning of the
print file, page control commands may be associated with a
single page or with groups of pages. Page control com-
mands determine the selection of the paper source, paper
size, orientation, margins, and text spacing. This chapter
describes how to address page control in your application.

If you are not yet familiar with the concepts of physical
page, logical page, and printable area, please look over the
section titled “The Page” in the PCL 5 Printer Language
Technical Reference Manual. It provides a good visual expla-
nation of these terms and will prepare you for the discus-
sion in this chapter.

Selecting a Paper The paper source command allows your job to select paper

Source from either the paper trays, the manual feed input, or from
an envelope feeder. The following example shows a poten-
tial situation using this command:

Example: This example demonstrates selecting paper from the man-
Selecting a ual feed input for the first page of a print job, and then from
Paper Source the paper cassette for the remaining pages. It is assumed
that the proper job setup commands have already been sent
to the printer.

Background: Using the application software, the user speci-
fies that the first page of his print job will be fed manually
and the remaining pages fed from the upper cassette. When
the user begins to print the job, the printer (and possibly
the software) prompts the user to insert paper in the man-
ual feed slot. (Although this will work automatically on
some PCL 5 printers by putting a sheet of paper in the man-
ual feed slot before printing, using the manual feed com-

Page Setup 3-1

mand as shown below eliminates potential problems caused
when printing with different sizes of paper.)

Ec&L2H Select the manual feed input as the
paper source.

PRINT DATA Send print data for the letterhead
page.

Ec&I1H Feed paper from the paper cassette

(the tray location varies with the
printer model).

PRINT DATA Send print data for the remaining
pages.

Selecting a Physical

Page Size

The Page Size

3- 2 Page Setup

Command

Note l'a

There are two methods of selecting the physical page size:
sending the page size command or sending the page length
command.

The page size command (Ec&£#A) designates the page size,
which in turn defines the size of the default logical page.
This command is recommended instead of the page length
command because it explicitly selects physical page size
and it allows for the selection of various sizes of envelopes
(which cannot be selected with the page length command).
It also provides a quick way to specify the physical page
size without requiring a VMI command. (The page size com-
mand is not recognized by the Laserdet, LaserJet PLUS,
and LaserdJet 500 PLUS printers.)

When the page size command is used, it must be transmit-
ted at the beginning of the page prior to any printable data;
otherwise, when the printer receives the command, the cur-
rent page is closed and printed.

Example:
Using the Page
Size Command

The Page Length
Command

Note l'a

This example sets the physical page size using the page size
command (it is assumed that the proper job control com-
mands have already been sent to the printer, as explained
in Chapter 2):.

Ec&L3A Select legal page size. The logical
page length is automatically de-
faulted to 14 inches (without send-
ing the page length command).

Ec&100 Select portrait orientation.

The page length command (Ec&{#P) sets the size of the logi-
cal page length in number of lines (at the currently active
VMI), which automatically defines the physical page size.

If you do wish to use the page length command, it should be
preceded by a command that sets the orientation to portrait
and a command that sets the VMI (line spacing).

In landscape orientation, page lengths for legal and letter-
size papers are identical. To select legal-size paper in land-
scape orientation using the page length command, the user
should switch to portrait orientation, set the page length for
legal paper, and then return to landscape orientation (see
the following example). This situation can be avoided by us-
ing the page size command instead of the page length com-
mand.

When the page length command is used, it must be trans-
mitted at the beginning of the page prior to any printable
data; otherwise, when the printer receives the command,

the current page is closed and printed.

Page Setup 3- 3

Example:
Using the Page
Length Command

The example below demonstrates how the page length com-
mand should be used:

This example shows the commands that are necessary to se-
lect a legal-size landscape page using the page length com-
mand (without these commands, letter-size paper would be
selected). (It is assumed that the proper job control com-
mands have already been sent to the printer, as explained
in Chapter 2):

Ec&L00 Set the logical page orientation to
portrait.

Ec&L8C Designate a VMI of 8 (6 LPI).

Ec&(84P Set the logical page length to 84

lines to select legal paper (14 inches
at 6 LPI = 84 lines).

Ec&L10 Set the logical page orientation to
landscape.

The Actual
Printable Area

3- 4 Page Setup

The actual printable area on the physical page is deter-
mined by the physical limits of the printer and the logical
page. The area where you can move the cursor and print is
approximately the size of the physical page, minus a small
distance on all edges of the paper.

Figure 3-1 shows the difference between the physical page,
the logical page, and the printable area. A short explanation
of each may help in understanding the difference between
these areas:

» The physical page is simply the entire area occupied by
the page on which you are printing, the actual paper size.

» The logical page defines the entire addressable area on
the page.

» The printable area defines the area on the page where
the printer is physically capable of printing a dot.
These brief definitions are accurate, but they need some
elaboration to make the concept clear. Notice that the logi-
cal page (addressable area) extends all the way to the top
and bottom of the physical page. This entire area is address-
able, but the areas within 50 dots of the top and bottom of
the page are not printable (the unprintable region). Al-
though it is possible to address portions of the unprintable
region, attempting to print there will result in data loss.

Physical _
Page g Logical
) D Page
Printable
Area "

Figure 3-1. The Logical Page and Printable Area

To help further explain printable area, notice that on the
left and right sides of the page, the logical page lies within
the printable area. That means that you can move the cur-
sor only up to the edges of the logical page, not the edge of
the printable area. The cursor can be moved to the edges
of the logical page (the left- and right-most addressable
limits), but any character that begins printing within the
logical page boundary and extends beyond it will not be
clipped until it reaches the edge of the printable area. In
other words, if part of a character extends to the left or
right of the logical page boundary, it will still be printed up
to the printable area boundary, as long as part of the charac-
ter lies within the logical page.

Page Setup 3-5

3- 6 Page Setup

To summarize these points:

* The cursor can be moved anywhere on the logical page,

but data will be lost if printing is attempted in the area
within the top 50 dots and bottom 50 dots on the page.

On the left side of the page, the cursor can be moved to
the edge of the logical page and text or graphics can be
printed there. If a character is started within the logical
page but extends beyond the left margin (for example,
backward-slanted italics), the character will not be
clipped until it reaches beyond the left printable area
boundary. (Graphics will not extend beyond the left edge
of the left logical page boundary.)

On the right side of the page, the cursor can be moved to
the edge of the logical page. If a line of text approaches
the right edge of the logical page, and a character
extends beyond the right logical page boundary, it will
not be clipped until it reaches the right printable area
boundary. This also holds true for raster graphics and
image fill (the Print Model); rules, however, are clipped
at the logical page boundary.

A
Note l'a

Chapter 2 of the PCL 5 Printer Language Technical Refer-
ence Manual contains a table that lists the sizes of the logi-
cal page and printable area boundaries for each page size.

Example:
Seeing the
Printable
Limits

Here is a simple exercise that prints a gray shading pattern
to the edges of the printable area on the top and bottom,

and to the edges of the logical page on the left and right;

this example also prints text so that you can see how charac-
ters are clipped in the unprintable region. If you try this ex-
ample, you will be able to see exactly how close you can
print to the edges of the page for a particular paper size.

EE
Ec&LOE
Ec&LIL
Ec*pOx0Y

Ec*c2700a4200B

Ec*cl1bG
Ec*c2P

Ec(0U
Ec(s1p65v1s3b4101T

Ec*p188Y

This is a test and it
clips.

Reset the printer.
Set top margin to 0.
Disable the perforation skip mode.

Move the cursor to the top left cor-
ner of the logical page (0,0).

Specify a rectangular area to be
filled with a shade of gray. A size of
9 inches by 14 inches is specified so
that the example will work with any
of the standard paper sizes, includ-
ing legal. The command specifies
the rectangle size in dots (9 inches x
300 dots/inch = 2700 dots; 14 inches
x 300 dots/inch = 4200 dots).

Specify an area fill ID (15% gray).

Fill the specified rectangular area
with a shaded fill pattern.

Select the ASCII symbol set.

Select a 65-point, bold, italic, CG
Times font.

Move the cursor down 5/8-inch from
the top of the page so you can see
how the following text will be
clipped at the top.

Send text that will clip at the top
and the right edges of the page.
When you print this, notice how the

Page Setup 3-7

last character is clipped at the right
printable area boundary (beyond
the logical page boundary indicated
by the shading on the printout).

EE Reset to end job and eject the page.

Keep in mind that, although the size of the printable area is
the same for every printer of the same model, the distance

Ints 1s a lest a i cl

Characters
Clipped at
Edge of
Printable

/ Area

Logical
Page

Figure 3-2. Seeing the Printable Limits

between the edge of the physical page and the printable
I; area may vary slightly from printer to printer due to paper
Note ﬂ registration tolerances.

3- 8 Page Setup

Changing
Orientation

Note l'a

To provide printing flexibility, the PCL 5 Laserdet printers
support printing in four orientations:

* Portrait

» Landscape

* Reverse Portrait

» Reverse Landscape

When the orientation command is sent to the printer, the
printer defaults the following:

» Logical page

* Print direction

+ Page length

+ Text length

* Top margin, left margin, right margin
* HMI and VMI

e Auto macro overlay disabled

When the orientation command is sent, the orientation of
fonts is automatically changed to match that of the logical
page. The orientation of raster graphics is also rotated to
match the new orientation, if the raster graphics presenta-
tion mode is set to 0 (Ec*rdF).

The default HP-GL/2 coordinate system rotates with the
logical page orientation, but can be modified using HP-GL/2
directives (the RO command); this orientation interaction is
discussed in Chapter 10 (see Figure 10-3).

If the printer has received any printable data prior to receiv-
ing an orientation command, the page is immediately closed
and printed and a new page is opened with the selected ori-
entation. Because the printer ejects any print data and de-
faults the features listed above, the orientation command
should always be sent at the beginning of a page and

Page Setup 3-9

Note l'a

Example:

Changing Orientation

3- 10 Page Setup

Note l'a

followed by commands that set those features for which a
non-default value is desired.

Only one orientation is allowed per logical page, however
multiple print directions may be used (see the following
Print Direction discussion).

This example demonstrates a print job containing both por-
trait and landscape pages; the first page is a letter-size
page in portrait orientation and the second page is a legal-
size page in landscape orientation. (The example is simpli-
fied in that it assumes the default values for print direction,
text length, margins, and line spacing.)

EE Reset the printer.
Ec&01X Set the number of copies to 1.
Ec&L2A Select a letter-size page.

Ec&L00 Select portrait orientation.
PRINT DATA Send print data for the first page.
(portrait)

Ec&L3A Select a legal-size page.

Ec&L10 Select landscape orientation.
PRINT DATA Send print data for the second page
(landscape).

EE Reset printer at end of job.

The example above demonstrates the efficiency of the page
size command. If the page length command was used in-
stead, several more commands would have been necessary
to accomplish the same goal.

Print Direction

A
Note l'a

Example:
Two Print Directions
on a Page

The print direction command allows you to switch the print
direction without ejecting a page. With this command, you
can print more than one direction of text and graphics on
the same page. The print direction can be rotated counter-
clockwise 0, 90, 180, or 270 degrees in relation to the cur-
rent orientation of the logical page (which has a print
direction of 0 degrees).

An important point to remember when changing print direc-
tion is that the margins are translated with the print direc-
tion. In other words, if the print direction changes by 90
degrees, the left margin becomes the new top margin, the
top margin becomes the new right margin, etc..

The CAP (current active position) stack, a list of previous
cursor positions created using the push/pop cursor position
command, is also translated. The positions in the CAP
stack are translated so that they remain at the same physi-
cal location on the page. Translating the CAP stack enables
you to store and restore exact physical page positions, re-
gardless of the current print direction.

Changing print direction defaults the HMI.

This example shows how to print text in two directions on
the same page using the print direction command:

EcE Reset printer

Ec&L00 Select portrait orientation. This also
sets the print direction to its default
value, 0 degrees.

Ec(@U Select the ASCII symbol set

Ec(s1p24vs3b4101T Select a bold, 24-point CG Times
font. The CG Times typeface is one
of the PCL 5 LaserdJet printer s
standard scalable typefaces. After

Page Setup 3- 11

3- 12 Page Setup

Portrait
Orientation

Reverse
Landscape
Orientation

Changing

Ec&a270P

Print

Ec&adP

Ec*p+60X

Direction

the print data is received, the
printer scales the selected typeface
to 24 point. (To save memory and
time, only those characters that are
to be printed are scaled.)

> Changing,_U

H

|

> EDirection

60-Dot Cursor
Move to Here

Print “Changing” in the portrait ori-
entation

Set the print direction to 270 de-
grees (reverse landscape)

Print the word “Print” in the reverse
landscape orientation.

Set the print direction to 0 degrees
(portrait)

Move the cursor 60 dots to the right.
Since changing print direction
doesn't change the physical cursor
position, the cursor had to be moved
to the right to avoid printing on top
of the word “Print”.

Print the word “Direction”.

Managlng the Once you have selected a logical page orientation, you can

Text Area define the text area by sending the top, left, and right mar-
gin commands, as well as sending the text length and perfo-
ration skip mode commands.

A
Note "ﬂ There is no bottom margin command. The bottom margin

is automatically calculated by subtracting the text length
and top margin (at the current VMI) from the logical page
length.

As shown in Figure 3-3, the margins are related to the logi-
cal page, NOT the physical page. Since the printer can only
address the area within the logical page, the actual margin
distance from the edge of the physical page must be calcu-
lated by adding the selected margin distance to the distance
between the edge of the physical page and the edge of the
logical page.

Note l'a Consult the Logical Page and Printable Area Boundaries ta-
ble in Chapter 2 of the PCL 5 Printer Language Technical
Reference Manual. It lists values for each orientation and
page size.

Page Setup 3- 13

3- 14 Page Setup

Note l'a

Add This Distance to Selected
-W | ¢ Margin to Get Actual Margin

physical | —M——M—M——Wj6—78{(W—Y78 @ ——(— — — —
Page > |_

Printable
Area

Logical
Page

_J Selected
| —

Margin

Figure 3-3. Adjusting the Margin Distance

For example, to set a left margin of 1.5 inches on a portrait
page, you would set the left margin command for the value
that would give you 1.5 inches minus the 75-dot (.25-inch)
distance between the edge of the physical page and the logi-
cal page boundary (1.5 inches minus .25 inches or 1.25
inches). That equates to about 13 columns (column 12) at 10
characters per inch, instead of 15 columns.

The text area affects the placement of text and defines the
default HP-GL/2 picture frame. Raster graphics and cursor
movement commands are independent of the text area.
Using cursor positioning, text can be printed outside the
text area.

Controlling Top
Margin

The top margin determines the distance between the top of
the logical page and the start of text. The default top mar-

gin is 3 lines at 6 lines per inch (.5 inches), however the top
margin can be set to values from 0 to the size of the logical

page.

The top margin is specified in number of lines, and the dis-
tance between these lines is determined by the current line
spacing. The default cursor position is calculated as follows:

Top margin in inches + (.75 x VMI in inches) = position of first line of text

1— Left Margin

Top of Page

VMI Distance —I:

Top Margin - ey |— — S

Default Cursor / l

(CAP) Position I | _________

v

Figure 3-4. The Default Cursor Position

For example, a top margin command of (c&£6E sets the
printer to a top margin of 1 inch (6 lines x 6L.PI = 1 inch;
the VMI for 6 LPI = 8), resulting in a cursor position of 1.12
inches from the top of the physical page:

1 inch top margin + (.75 x (8/48 inches)) = cursor position of 1.12 inches

Page Setup 3- 15

Note l'a

Establishing the
Bottom Margin

3- 16 Page Setup

The top margin command should precede the text length
command since the top margin command resets text length.

Setting the text length (Ec&L#F) provides a method for set-
ting a bottom margin and controls the number of lines
printed per page. The bottom margin coincides with the be-
ginning of the perforation skip region. Although there is not
an actual perforation, the perforation skip region refers to
the distance between the bottom of the text area on one
page to the top of the text area on the next page.

The largest acceptable text length value is equal to the logi-
cal page length minus the top margin; for example, for let-
ter-size paper with a 1/3-inch top margin (VMI = 8), the
largest text length is 64 lines (66 lines [11 inches] — 2 lines
[1/3 inch]). However, since the top margin distance plus the
text length establishes the bottom margin, an acceptable
bottom margin can allow printing in the unprintable region,
potentially resulting in clipping (which is not acceptable).
Using the above example, setting the top margin to 2 and
specifying a text length of 64 results in data clipping (as-
suming a line spacing of 6 LPI and a 12-point font size).
Likewise, specifying a top margin that is too small causes
characters to be clipped at the top of the page.

To avoid losing data, the text area must not extend into the
unprintable region. In other words, if the unprintable re-
gion is 50 dots at the bottom and 50 dots at the top of the
page, the text length must be set so that text starts after
and stops before reaching the 50-dot boundary.

Example:
Avoiding the
Unprintable Region

Note l'a

Using the

Perforation Skip
Region for Print-and-
Space Formatting

This example demonstrates a method of using the maxi-
mum printable area while preventing the possibility of
losing data in the unprintable region at the bottom of the

page.

Ec&L2A Designate letter-size paper.
Ec&L00 Designate portrait orientation.
Ec&L8C Designate VMI of 8 (6 LPI).
Ec&L1E Set top margin to 1/6th of an inch.
Ec&L64F Set the text length to 64 lines. The

resulting bottom margin is 1 line
(66 lines for a full page - 1 line top
margin - 64 lines text length = 1 line
bottom margin).

The line feed and half line feed commands are the only cur-
sor movements restricted by the bottom margin. If a line
feed or half line feed causes the cursor position to enter the
perforation skip region, the current page is closed and
printed. On the other hand, if a cursor movement command
moves the cursor into the perforation skip region, the
printer does not automatically eject a page.

For simple print-and-space formatting, the text length can
be used to limit the number of lines printed on a page.
When a line feed or half line feed causes the cursor to ex-
tend into the perforation skip region, the printer closes and
prints the current page. This method eliminates the need
for the software to manage the number of lines before send-
ing a form feed command.

Page Setup 3- 17

Example:
Print-and-Space
Formatting

3- 18 Page Setup

This example uses the perforation skip region for print-and-
space formatting by setting the text length and then allow-
ing the printer to automatically eject the page when the
perforation skip region is entered:

EcE
Ec&L2A

Ec&L00
Ec&18C
Ec&LHIF

TEXT FOR THE
FIRST LINE . . .

CR-LF

TEXT FOR THE
5¢th LINE . . .

CR-LF

Reset the printer.

Set page size to letter (this automat-
ically defaults the logical page to 66
lines at the standard VMI [6 LPI]).

Set the orientation to portrait.
Set the VMI to 8 (6 LPI).

Set the text length to 50 lines, leav-
ing a top margin of 3 lines and a bot-
tom margin of 13 lines. (Reset
enables the perforation skip mode
and sets the top margin to 1/2 inch
(8 lines); 66 lines [page length] - 3
lines [top margin] - 50 lines [text
length] = 13 lines bottom margin).

Send text to the printer.

Send a carriage return and line feed
to move to the left margin on the
next line.

Send text to the printer.

Send a carriage return and line feed
to move to the left margin on the
next line. The line feed command
moves the cursor into the perfora-
tion skip region (bottom margin),
causing the printer to print and
eject the current page, and then be-
gins formatting the following page.

Controlling the
Left Margin

Note l'a

Example:
Setting the
Left Margin

The left margin is specified in columns and the distance be-
tween these columns is determined by the current HMI
(horizontal motion index). For fixed-pitch fonts, the default
HMI value corresponds to the print pitch; for proportionally
spaced fonts, the default HMI corresponds to the width of
the space character. HMI can also be adjusted to the de-
sired value using Ec&k#H, where # equals the number of
1/120-inch increments per column (see “Changing Charac-
ter Spacing (HMI)” later in this chapter).

The first column is column 0. The margin value indicates
the column in which the first character is printed. For exam-
ple, setting the left margin with the Ec&a5L command sets
the left margin to the 6th column. In this case, the printer
spaces over 5 columns and begins printing in the 6th col-
umn (leaving a 5-column margin). The actual margin dis-
tance is dependent on the current HMI.

This example shows how to set the left margin to 1 inch
from the edge of the logical page (which is 1 inch plus 75
dots from the edge of the physical page). It is assumed that
the printer environment is properly established as de-
scribed in Chapter 2.

Ec&L2A Select a letter-size page. This de-
faults the logical page size to 66
lines (11 inches x 6 LPI = 66 lines).

Ec&L00 Select portrait logical page orienta-
tion.

Ec&L8C Designate a VMI of 8 (6 LPI).

Ec&k12H Set horizontal motion index (HMI)

to 10 characters per inch.

Ec&L10L Set left margin to one inch, based on
the current HMI. Remember, the
first column is column 0.

PRINT DATA Place text.

Page Setup 3- 19

Controlling Right

Margin

Example:

Controlling Right Mar-

3- 20 Page Setup

gin

Except in simple print-and-space applications, the right
margin is not set, but is managed by the application. The
application takes the user' s desired right margin setting
and calculates where to place the carriage return based on
the total character and word spacing in each line of text.

This example demonstrates a simple print-and-space appli-
cation that effectively sets a right margin without using

the right margin command. Instead, the right margin is con-
trolled by the application using font spacing information

(TFM data).

Background: The user has set the left and right margins to
one inch using the software application' s page formatting
menu. Assuming letter-size paper, this determines a col-
umn-width of 6.5 inches.

EcE
Ec&L2A
Ec&L00
Ec&L8C
Ec&aldL

The quick brown
fox jumped over
the lazy dog...

CR-LF

More text on the
next line...

Reset the printer.

Select a letter (8-1/2 x 11) page size.
Designate portrait orientation.
Designate a VMI of 8 (6 LPI).

Set the left margin to one inch (re-
member that the first column is col-
umn 0 and that the default HMI is
10 characters per inch [depending
on the default font].)

Place text until the total width of
character and word spaces equals
6.5 inches (see Chapter 6 for exam-
ples of how to obtain font spacing in-
formation).

Send a carriage return and line feed
to move the cursor to the left mar-
gin on the next line.

Place text until the total width of
character and word spaces equals
6.5 inches.

CR-LF Send a carriage return and line feed
to move the cursor to the left mar-
gin on the next line.

Variation: Instead of reading TFM data to determine the
right margin, the application could use a fixed-pitch font
and then count the number of characters per line until it
reaches the value that equals 6.5 inches.

Changing Character
Spacing (HMI)

A
Note l'a

The horizontal motion index (HMI) determines the width of
columns used for setting margins, horizontal cursor posi-
tioning (column moves only), and the spacing between char-
acters in a fixed-pitch font. As discussed in the PCL 5
Printer Language Technical Reference Manual, the HMI is
set using the ? & k # H command, where # equals the num-
ber of 1/120-inch increments per column. (For proportion-
ally spaced fonts, the HMI affects only the width of the
space control code for font spacing.)

Designating font attributes defaults the HMI to that of the
currently selected font. It is not necessary to send an over-
riding HMI unless a value other than the default is desired.

Page Setup 3- 21

Example:
Character Spacing

Modifying Line
Spacing (VMI)

3- 22 Page Setup

This example shows how to modify the character spacing of
a fixed-space font from 10-pitch to 12-pitch:

This is 10 characters per inch.

This is 12 characters per inch.

E(8U Select the Roman-8 symbol set.

Ec(s@p1dh12vsb3T Select the 10-pitch Courier font (10
characters per inch).

This is 10 characters Send a line of 10-pitch text.
per inch.

Ec&k10H Set HMI to 10/120ths of an inch or
12 characters per inch.

This is 12 characters Send 12-pitch text to the printer.
per inch.

The line spacing can be modified using either the vertical
motion index (VMI) or line spacing commands, or by chang-
ing the printer’s front panel FORM= setting. The VMI
command is recommended for most applications since it
offers a greater degree of accuracy (VMI is specified in units
of 1/48 inch and is valid to four decimal places).

Please keep the following points in mind when designating

line spacing:

* Ensure that line spacing is to a known state, such as the
factory default setting (VMI = 8; 6 LPI), prior to using
the page length command. The page length command
uses the current VMI to determine the length of the
logical page, which in turn defines the physical page size.

Example:
Job Control and
Page Setup

Note l'a

* Ensure that line spacing is at a known value before
setting the top margin. The top margin (in inches) is
calculated as top margin (in lines) x (current VMI)/48.
Therefore, the value of VMI is critical to the top margin

setting.

This example shows a recommended way of setting up a
job, including job control and page control commands. (For
a good example of a job setup string, also see the General
Print Job Initialization discussion in Chapter 13.)

Jobs destined for PJL printers should also include the UEL
command as the very first command, and the PJL. ENTER
command immediately before the initial &cE (as described in

Chapter 2).

EE Reset the printer.

Ec&L1X Set number of copies to 1.

Ec&L2A Set the page size to letter (8.5" x
11").

Ec&L00 Set the orientation to portrait.

Ec&L8C Designate a VMI of 8 (6 LPI).

Ec&L2E Set top margin to 2 lines (1/3 inch).

Ec&k12H Select an HMI of 12/120ths or 10
characters per inch.

Ec&aldL Set the left margin to 1 inch (a one-

inch margin is actually one inch
from the left edge of the logical page
plus 1/4 inch. The 1/4 inch [75 dot]
value is the distance between the
left edge of the physical page and
the logical page. This value was ob-
tained from the Logical Page and
Printable Area Boundaries table in

Page Setup 3- 23

3- 24 Page Setup

Note l'a

Ec&L61F
Text . .. Text

CR-LF

Text . .. Text

CR-LF

the PCL 5 Printer Language Techni-
cal Reference Manual.)

Set the text length to 61 lines.

Print text until the total character
and word spacing equals the desired
right margin.

Move to the left margin on the next

line.

Place text until the total character
and word spacing equals the desired
right margin.

Move to the left margin on the next
line

Not all page control commands need to be sent for each
page. After the first page, page control commands should
only be sent when a page control feature needs to be
changed. Using page control commands on each page may
cause an unwanted page eject if any printable data is in the
buffer when the command is sent.

Cursor Positioning

Contents

Introduction 4-1
Current Active Position (CAP) 4-1
CAPforText..........cviiiin ... 4-1
CAP for Raster Graphics. 4-2
CAP for Vector Graphics..................... 4-3
CAP for Rectangular Area Fill 4-4
Print-and-Space Cursor Positioning............... 4-5
Absolute vs. Relative Positioning 4-6
Units of Movement 4-7
PCL Units vs. Decipoints vs. Columns/Rows 4-7
HP-GL/2 Plotter Units 4-10
Saving the Cursor Position 4-10
Positioning the Cursor at the Limits of the Page. 4-11

How the Paper Path Affects Cursor Placement 4-16

Introduction

Changing the current active printing position is referred to
as cursor positioning. For some programs, such as simple
print-and-space applications, cursor positioning commands
are not necessary. Instead, text is printed until a line feed or
half line feed control code causes the cursor to reach the per-
foration skip region and the printer automatically ejects the
current page.

However, for many other applications, precise control of the
current active position (CAP) is essential. This chapter de-
scribes the CAP for text as well as for the different types of
Laserdet graphics. It also discusses the various methods of
positioning the cursor and the advantages and disadvan-
tages of each method.

Current Active
Position (CAP)

CAP for Text

The current active position is the current position of the
imaginary printer “cursor”, or the location where the next
character will be printed or graphics dot will be placed. Af-
ter an image is printed, the CAP changes depending on
what type of image was printed, whether text, raster graph-
ics, vector graphics, or rules (rectangular area fill). The fol-
lowing discussion shows how the CAP changes with each
image type.

Before a character is printed, the CAP is along the baseline
at the character reference point. After printing a character,
the CAP moves to the right the horizontal escapement
(delta X) of the character (see Figure 4-1). (This is also re-
ferred to as updating the cursor position.)

For fixed-pitch fonts, the cursor moves the HMI distance for
each character printed. For example, if the HMI setting is
12/120ths of an inch, the cursor moves 12/120ths or 1/10th
of an inch along the baseline for each character printed.

Cursor Positioning 4-1

CAP for Raster
Graphics

4-2 Cursor Positioning

For proportional fonts, the amount of space moved for each
character is the horizontal escapement distance, which the
printer obtains from the character descriptor. Applications
can get this information from the TFM file for the font (see
Chapter 6 for more information on accessing data from the
TFM files). For each character printed, the cursor moves a
distance equal to the horizontal escapement of the character.

Horizontal

\ Escapement

|

Character ; ;

Reference I I

Point ! ! Cursor Position
(Cursor | After Printing
Position I Character

|

Before !

Printing j) |

|

_ e

|

|
/ | \ Character

Baseline [Reference Point

! of the Next
! Character

|

Figure 4-1. Cursor Positioning for Text

When printing raster graphics, the CAP is at the left graph-
ics margin, starting at the current Y position. After print-
ing the raster image, the CAP is located at the left graphics
margin of the dot row following the last row of raster data
(see Figure 4-2). (If a raster height command has been used,
the CAP following an end raster graphics command is lo-
cated at the left graphics margin and one dot row below the
lowest part of the picture frame defined by the raster height
command.)

CAP for Vector

Graphics CAP Before
Printing
Raster
Image

CAP After
Printing
Raster
Image

Figure 4-2. Raster Graphics Cursor Position

In HP-GL/2 mode, the CAP is referred to as the pen loca-
tion. Whenever a plotting instruction is completed, the pen
location is updated to the current point. The next instruc-
tion begins at the current pen location.

Cursor Position

(Pen Location)

Before Printing
the Line

|

Figure 4-3. Cursor Positioning and Vector Graphics

T

Cursor Position

(Pen Location)

After Printing
the Line

There are some instructions, however, that do not update
the current pen location. For example, after the circle (CI)
instruction finishes drawing a circle, the CAP returns to the
previous pen location (the circle origin). (The definition of
each of the HP-GL/2 commands explains whether the CAP

Cursor Positioning 4-3

is updated or restored—see the HP-GL/2 portion of the PCL
5 Printer Language Technical Reference Manual.)

When the printer enters HP-GL/2 mode from PCL mode,
you can choose to have the HP-GL/2 pen location be the cur-
rent PCL cursor position or the last HP-GL/2 pen location
prior to entering PCL mode, depending on the value speci-
fied in the Enter HP-GL/2 Mode command (Ec%#B).

Likewise, when entering PCL from HP-GL/2 mode, the
value specified in the Enter PCL Mode command (Ec%#A) de-
termines whether CAP is the last PCL cursor location be-
fore entering HP-GL/2 mode, or the last pen location in
HP-GL/2 mode before entering PCL mode. (See the PCL 5
Printer Language Technical Reference Manual for more in-
formation on Enter HP-GL/2 Mode and Enter PCL Mode.)

.
Note "ﬂ The HP-GL/2 coordinate system is different than the PCL

coordinate system. See Chapter 10 for more information on
the HP-GL coordinate system.

CAP for Rectangular When printing rectangular area fills (rules), the CAP is at
Area Fill the upper left corner of the rectangle prior to printing. Af-
ter the rule is printed, the CAP does not change; the cursor
is in the same position as it was before printing the rule.

CAP Before
Printing Rule

CAP After

Figure 4-4. CAP Position for Rectangular Area Fill

4-4 Cursor Positioning

Print-and-Space
Cursor Positioning

Example:
Print-and-Space
Cursor Positioning

Print-and-space applications move the cursor using the
space, backspace, line feed, and carriage return control
codes instead of the cursor positioning commands. Although
this method of moving the cursor is not recommended for
many applications, it does provide an easy way to print text
for basic printing applications.

To use print-and-space positioning, set the top and left mar-
gins as well as the text length. With the perforation skip
mode enabled (the default), the printer will eject a page as
soon as a line feed or half line feed control code causes the
cursor to enter the perforation skip region (the area be-
tween the bottom of the text area and the top of the text
area of the next page).

This example demonstrates print-and-space formatting us-
ing the text length command and the perforation skip mode:

EE Reset the printer (defaults features
to user environment, including per-
foration skip mode enabled and top
margin at 1/2 inch).

Ec&L2A Select letter-size paper.

Ec&L00 Designate portrait orientation.
Ec&L8C Set VMI to 8 (6 LPD).

Ec&abL Set left margin to 1/2 inch from left

edge of logical page (the first charac-
ter will be placed in column 5, or 6
columns from the edge of the logical
page—the distance is 1/2 inch be-
cause 5 columns at 10 columns/inch
= 1/2 inch; the first column is col-
umn 0).

Ec&L50F Set text length to 50 lines.

Cursor Positioning 4-5

Text . .. Text Place text until the number of char-
acters is equal to the desired right

margin.

CR-LF Move to the left margin on the next
line.

Text . .. Text Place text for the last line of the

page until the number of characters
is equal to the desired right margin.

CR-LF Move to the left margin on the next
line, causing the cursor to enter the
perforation skip region. The page is
ejected and succeeding text is for-
matted for a new page.

Absolute vs.
Relative Positioning

4-6 Cursor Positioning

Positioning the cursor can be accomplished by moving a dis-
tance relative to the current position, relative positioning,
or from an absolute reference point, absolute positioning.

When using absolute positioning in PCL mode, the absolute
reference point (0,0) is the intersection of the left edge of
the logical page and the top margin. In HP-GL/2 mode, the
absolute reference point is logical 0,0 of the current HP-
GL/2 coordinate system. The default position for logical 0,0
is the lower left corner of the HP-GL/2 picture frame.

Use relative positioning when attempting to establish a rela-
tive distance between objects. For example, many word proc-
essing applications use relative horizontal positioning to
justify a line of text. The application calculates the number
of words that will be on a line, then calculates the amount

of space between each word. Then relative cursor moves
are used after each word instead of a space character as
shown in the example below.

Ec&a+90PHRelative Ec&a+68Hcursortc&a+69H
commandstc&a+67Husetc&a+70H+ orec&a+68H-

Figure 4-5. Relative Positioning for Justifying Text

Use absolute positioning when attempting to guarantee an
absolute position on the logical page. For example, placing
a raster graphic in a certain spot on the page is usually eas-
ier using absolute positioning because the position is rela-
tive to a fixed position, not dependent on a relative distance
from the previous image.

Units of Movement

PCL Units vs.
Decipoints vs.
Columns/Rows

The PCL 5 Laserdet printers provide flexibility in how you
specify cursor moves on the PCL coordinate system. Units
on the X axis may be PCL Units, decipoints, or columns;
units on the Y axis may be PCL Units, decipoints, or rows.
(See the PCL 5 Printer Language Technical Reference Man-
ual if you need background information about cursor posi-
tioning.)

The printer uses an internal measuring unit of 1/7200th of
an inch, and maps PCL Units, decipoints, columns, and
rows to this internal unit. All positioning is kept in internal
units and rounded to physical dot positions when data is
printed. This eliminates error caused by successive round-
ing or truncation.

Cursor Positioning 4-7

Note l'a

4-8 Cursor Positioning

The LaserdJet 4 printer allows you to specify the size of PCL
Units in specific sizes that range from 96 to 7200 units per
inch (the default is 300). For all other Laserdet printers, the
PCL Unit size is always 1/300th of an inch (the dot size).

Using PCL Units

The PCL Unit size defines the number of units per inch
used in the following:

» Vertical and horizontal cursor position
» Vertical and horizontal rectangle size
» Horizontal movement after each character is printed

As mentioned above, for printers other than the LaserdJet 4,
the PCL Unit size cannot be specified and is set at 300 PCL
Units per inch. Since the LaserdJet 4 printer allows you to
specify the size of a PCL Unit, the LaserdJet 4 printer is dis-
cussed separately below.

For the LaserJet 4 printer:

The Laserdet 4 printer dot size is 1/600th of an inch. The de-
fault PCL Unit size is 1/300th of an inch, but you can use
the Unit of Measure command to set the PCL Unit size to
600 PCL Units/inch or any of the valid values from 96 to
7200. For the LaserdJet 4 printer, the most accurate PCL
Unit Values are factors or integer multiples of 600, since
the values are rounded to the nearest Unit of Measure
value when converting to dots for printing. For example, if
you set the Unit of Measure to 600 units/inch, the position-
ing values do not need to be rounded since they match the
printer' s resolution.

For all other LaserJet printers:

For all printers except the Laserdet 4, PCL Units are
equivalent to the dot size, which is 1/300th of an inch.
There is an advantage in using PCL Unit positioning com-
mands instead of decipoint or row/column moves: PCL Unit
commands are accurate to the dot because no rounding of

dot positions is performed. A disadvantage is that this
method is more device-dependent than decipoints.

Using Decipoints

A decipoint is 1/720th of an inch or 1/10th of a typo-
graphical point. Using decipoints for cursor moves can pro-
vide greater device-independence, an advantage for
applications such as desktop publishing where print files
may be proofed on the LaserdJet printer and then sent to a
high-resolution imagesetter. A disadvantage of using de-
cipoints is that when the printer converts decipoints to dots
for printing, the user has little control over which dot is se-
lected (rounding must first occur).

Using Rows and Columns

When rows are used for positioning, cursor placement is de-
pendent on the current vertical motion index (VMI), which
is the number of lines of text per inch. For example, at six
lines per inch, one line is 1/6 inch and at eight lines per
inch, one line is 1/8 of an inch.

Column positioning is dependent on the current horizontal
motion index (HMI), which is the distance between consecu-
tive fixed-pitch characters; this distance changes with the
selected font. For fixed pitch fonts, every character is the
width of the HMI. For proportional fonts, the HMI is equal
to the width of the space character.

Since column positioning is based on the pitch of the cur-
rently selected font, it can be an advantage in some applica-
tions. Disadvantages of using row/column positioning are
that the commands are not useful for complex page format-
ting, they are difficult to use with proportional font format-
ting, and they are font dependent.

Cursor Positioning 4-9

HP-GL/2 Plotter Units

When in the HP-GL/2 mode, the printer moves in either
plotter units (plu) or user units. There are 1016 plotter units
in an inch and 40 in a mm (1 plu = .025mm or .00098 in.).
User units can be set up to virtually any size. Both types of
HP-GL/2 units are converted into the equivalent number of
dots prior to printing.

Saving the Cursor
Position

Example:
Saving/Restoring
the Cursor Position

4-10 Cursor Positioning

Sometimes it is useful to be able to save the previous cursor
location, or several previous cursor locations. The
push/pop cursor position command allows you to store and
recall up to 20 positions.

A common application of this command is saving the cursor
position prior to executing, calling, or overlaying a macro
and recalling the position after the macro command has
been carried out.

When using the push/pop cursor position command, the ap-
plication must carefully manage all push/pop activity to en-
sure that the correct position is being returned.

This example demonstrates the use of the push/pop cursor
position command. (It is assumed that the job has been cor-
rectly set up and that a macro with a macro ID of 53 has
been previously created.)

Ec &S Store (push) the current cursor posi-
tion.

Ec&f53y3X Call macro number 53.

Ec&f1S Recall (pop) the position the cursor

was in prior to calling the macro.

Positioning the
Cursor at the Limits
of the Page

Note l'a

Example:

Placing Graphics
at the Top-Most
Position

As noted earlier, attempting to print too close to the unprint-
able region can cause clipping. The following examples
show how to print as close as possible to the edges of the
page without clipping any characters or raster data. (To see
the actual size of the area where you can move the cursor
and place a dot, see the section titled “The Actual Printable
Area” in Chapter 3.)

The PCL 5 Laserdet printers clip only those portions of the
character that extend into the unprintable region (dot-level
clipping); characters are not clipped entirely unless the
whole character extends into the unprintable region. (This
differs from the LaserdJet series II printer, which performs
character cell clipping.)

This example demonstrates placing raster graphics data at
the top-most printable dot row. (It is assumed that the
proper job setup commands have been sent as described in
Chapter 2. If this example is sent to the Laserdet 4 printer,
it is assumed that the Unit of Measure setting is at 300
PCL Units/inch.)

Ec&LOE Set top margin to 0.

Ec*pbdY Move absolute vertical cursor posi-
tion 50 dots below the top of the
physical page (a 50-dot move places
the cursor at the top of the printable

area).

Ec*t300R Set the raster graphics resolution to
300 dots per inch.

Ec*rdA Set the raster graphics margin to
the left-most printable position.

Ec*b#Wdata . . . Transmit raster data.

Ec*rB End raster graphics.

Cursor Positioning 4-11

Example:
Placing Text at
the Top-Most
Position

Note l'a

4-12 Cursor Positioning

This example places a character at the top-most printable
dot row. (It is assumed that the proper job setup commands
have been sent as described in Chapter 2. If this example is
sent to the Laserdet 4 printer, it is assumed that the Unit of
Measure setting is at 300 PCL Units/inch.)

Ec&LOE Set top margin to 0.

Ec*p8dY Use an absolute vertical cursor posi-
tion move down to dot 80 (80 dots is
equal to the unprintable region dis-
tance (50 dots) plus the character
ascent distance (30 dots); this value
is read from the TFM files [see the
explanation below]).

Text . .. Text Transmit character data.

In this example, an 80-dot move is required to ensure that por-
tions of characters are not clipped. To determine the exact
movement required to prevent clipping, data must be avail-
able regarding the baseline distance. The baseline (or ascent)
distance describes how far the character cell extends above
the baseline; this distance varies from one font to another.

The ascent distance is stored in the TFM file for the font.
Refer to Chapter 6 to find how to access TFM files.

Example:

Moving to the
Right-Most Printable
Position

Baseline

Figure 4-6. The Ascent and Descent Distances

Background: In order to move to the right-most printable
position, the application must use the width of the logical
page to calculate the distance that must be moved. The
width of the default logical page for letter-size paper is 2400
dots (at 300 units/inch—see the Printable Area Boundaries
table in the PCL 5 Printer Language Technical Reference
Manual). When calculating the number of characters that
fit in this 2400-dot width, the procedure varies depending
on whether the font is fixed-pitch or proportional:

» For fixed-pitch fonts, divide the logical page width by the
pitch of the selected font. For example, for a 10-pitch
font, 2400 dots divided by 30 dots per character equals
80 characters (300 dots/inch divided by 10 characters per
inch equals 30 dots/character).

» For proportional fonts, add the horizontal escapement
distances for the characters that will be placed on the
line. The sum should not exceed the width of the page
(for example, 2400 dots for letter-size paper).

This example positions the cursor at the right-most print-
able position on a letter-size page. (It is assumed that the
proper job setup commands have been sent as described in
Chapter 2. If this example is sent to a LaserdJet 4 printer,

Cursor Positioning 4-13

Example:

Moving the Cursor
to the Lowest
Page Position

4-14 Cursor Positioning

the Unit of Measure setting must be 300 PCL Units per
inch in order to work properly with the values given.)

Ec*p2399X Absolute cursor move to dot number
2399, which is actually the 2400th
dot (the first position is dot 0).

This example shows how to position the cursor at the bot-
tom-most printable position on the page. (This example as-
sumes that we are using letter-size paper and that the
proper job setup commands have been sent as described in
Chapter 2. For the Laserdet 4 printer, the Unit of Measure
setting must be 300 PCL Units/inch in order for this exam-
ple to work properly with the values given.)

Ec&LOE Set top margin to 0.

Ec*p3249Y Move the cursor with an absolute
cursor move command to dot 3249.

The default letter-size logical page size is 3300 dots high
(see the Printable Area Boundaries table in the PCL 5
Printer Language Technical Reference Manual). Subtracting
50 dots for the unprintable region at the bottom of the page
leaves 3250 dots. Since the first dot is dot 0, 3249 repre-
sents the 3250th dot.

Example:
Placing Text at
the Page Bottom

Note l'a

This example demonstrates printing text at the bottom-
most printable position. (It is assumed that the proper job
setup commands have been sent as described in Chapter 2.)

Ec&LOE Set top margin to 0.

Ec*p3241Y Move the cursor with an absolute
cursor move to dot number 3241.

As in the previous example, the height of a letter-size page
is 3300 dots. Subtracting 50 dots for the unprintable region
at the bottom of the page leaves 3250 dots. To print a char-
acter, we must also subtract the descent distance of the char-
acter (that distance from the baseline to the bottom of the
character cell). In this instance, the descent distance is 8
dots, leaving a distance of 3242 dots (3250 - 8 = 3242). Since
the first dot is dot 0, we position the cursor at dot 3241, the
3242nd position.

The descent distance is stored in the TFM file for the font.
Refer to Chapter 6 for information on accessing the TFM
files (see Figure 4-6).

Cursor Positioning 4-15

How the Paper Path
Affects Cursor
Placement

Note l'a

4-16 Cursor Positioning

For some applications, such as printing on preprinted
forms, a slight skew may be noticed. In other words, lines
or text printed on the laser printer may not line up exactly
with lines on the preprinted form. This skewing is due to
the mechanical tolerances in the printer s paper path, not
to inaccuracy of dot placement.

The relationship of any dot to another dot on the page is al-
ways maintained. In other words, if the laser printer prints
two parallel lines 5 inches apart, the lines will always be
parallel to each other (within the resolution of the printer),
but the two lines will not necessarily be exactly parallel
with the edge of the physical page.

Problems with this type of skewing can be eliminated by us-
ing plain paper and printing the form on the page along
with the data. A typical example of this type of solution is
an application that incorporates several predesigned forms
that can be downloaded as macros. When the application is
ready to print a certain form, the macro for that form is
overlaid and then the data is filled in using cursor place-
ment commands.

The PCL 5 LaserdJet printers support macro cartridges,
which are an ideal way to support this type of application.
(See Chapter 12 for more information about macro car-
tridges.)

Using Fonts

Contents

Introduction. i 5-1
SelectingFonts 5-2
Bitmapped Fonts vs. Scalable Typefaces 5-2
Selecting Fonts by Characteristic.............. 5-3
Primary and Secondary Fonts................. 5-8
General Font Management. 5-9
Managing the Download Process. 5-9
Downloading Fonts. 5-11
Font Auto-Rotation......................... 5-13
Working With Fonts 5-14

Justifying Text When Using Proportional Fonts . 5-14
Adjusting Line Spacing for Point Size.......... 5-17
Transparent Print Data and Special Characters . 5-18
Underlining Characters. 5-19
FontHeaders............o ... 5-20

Introduction

The PCL 5 Laserdet printers can print using scalable
typefaces and bitmapped fonts. To handle scalable type-
faces, all PCL 5 printers come equipped with Agfa’s Intelli-
font font scaling technology. The Laserdet 4 printer also
includes the TrueType font scaling technology, allowing
users to enlarge and reduce type using Intellifont and/or
TrueType.

Having premium typefaces resident within the LaserdJet
printer allows your application to choose from a nearly lim-
itless range of point sizes for producing top-notch docu-
ments. Not only are the scalable typefaces available, but
the scaling performance is exceptional, too. Combined with
the PCL 5 printer’s improved I/O, the Laserdet printer font
scaling capabilities offer your software application excellent
printing performance. (Each PCL 5 printer has a different
combination of scalable typefaces and bitmapped fonts—see
the PCL 5 Comparison Guide for a list of the on-board type-
faces and fonts for each printer.)

This chapter explains how to use fonts, from downloading
and selecting them, to adjusting line spacing and justifying
text. The next three chapters, Chapters 6, 7, and 8, cover
supporting fonts in your application. For information on
creative effects, such as filling fonts with shading and cross-
hatch patterns, see Chapter 11, The Print Model. For infor-
mation on using HP-GL/2 vector graphics to produce special
font effects such as mirrored fonts, rotating fonts to any an-
gle, isotropic scaling or anisotropic scaling, see Chapter 10.

Using Fonts 5-1

Selecting Fonts

Bitmapped Fonts vs.
Scalable Typefaces

5-2 Using Fonts

Note l'a

As previously mentioned, the PCL 5 Laserdet printers can
print using scalable typefaces and bitmapped fonts. These
fonts can be either cartridge-based, disk-based, internal,
or in the case of the Laserdet 4 printer, SIMM-based.
Scalable typefaces are provided so that Laserdet printer
users can have access to a large number of typefaces in a
nearly unlimited number of font sizes.

Scalable typefaces and bitmapped fonts are all selected us-
ing the same process. To select a specific font, the applica-
tion sends a command to the printer. If a bitmapped version
of the font already exists in the printer when the command
is received, the specified font is selected. If the font needs to
be scaled, the font is scaled on a character-by-character ba-
sis to the specified point size and then selected; only those
characters that will be printed are scaled. The font selection
escape sequence actually initiates the font scaling process,
eliminating the need for a separate font scaling command
(the point size command, Ec(s#V, becomes the operator for
proportionally spaced fonts; pitch, Ec(s#H, is the operator for
fixed-spaced fonts).

For most PCL 5 LaserdJet printers, scalable typefaces are
“bound” to a particular symbol set when downloaded to the
printer. In other words, once the typeface is downloaded,
only the specified set of characters may be used unless the
typeface is downloaded with another symbol set. With the
Laserdet 4 and IIIP printers, typefaces may be either
“bound” or “unbound.” If an “unbound” scalable typeface

is downloaded to the printer, the user may select from any
of the many symbol sets contained within the printer. See
Chapter 7 and Appendix C for information about “unbound”
scalable typefaces.

Example:
Printing with the
Internal Scalable

Typefaces

Selecting Fonts by
Characteristic

This example shows how to scale an internal typeface and
print the resulting font:

37-Point Univers

EcE

Ec&L00

E(8U
E(s1p37vls3b4a148T

37-Point Univers
EcE

Reset the printer.
Set the orientation to portrait.
Select the Roman-8 symbol set.

Select a bold, upright, 37-point Uni-
vers font. No downloading is neces-
sary (this typeface is resident in the
PCL 5 printers). This command
automatically scales the typeface to
a 37-point font and prepares it for
printing.

Send the desired text to the printer.

Send a reset at the end of the print
job.

Fonts may be selected by sending a font selection command
that specifies the desired font characteristics or by selecting
a font ID number using the font selection by ID # command.
Although the font selection by ID # command is easier to
code, HP recommends instead that software developers se-
lect fonts using all the font characteristics as shown on the
next page. (Font ID numbers can be easily overwritten, es-
pecially in shared or multi-user environments.)

Although the font select escape sequences may be short-
ened to save code space, the right amount of abbreviation
depends on other fonts in the printer as well as the pre-
viously selected font. Shortened font select commands can
sometimes be abbreviated too much, causing the wrong font
to be selected. Using the entire font select escape sequence

Using Fonts 5-3

eliminates the possibility of leaving out a necessary charac-
teristic while trying to shorten the command.

The following list shows the font selection characteristics in
order of priority from highest to lowest.

Priority Characteristic Command
Highest Symbol Set Ec(ID
Spacing Ec(s#P
Pitch Ec(s#H
Height Ec(s#V
Style Ec(s#S
Stroke Weight Ec(s#B
Lowest Typeface Ec(s#T

As in PCL 4 Laserdet printers, the PCL 5 printers compare
the highest-priority font attribute specified with the same
attribute of all the fonts accessible to the printer. If only one
font contains the matching attribute, the printer selects
that font. If more than one exists, the printer compares the
next highest priority attribute until only one font remains.

If more than one font still remains, the font location is the
next selection criterion. The priority is as follows, from high-
est to lowest:

* Downloaded bitmapped fonts (lowest ID first)
* Downloaded scalable fonts (lowest ID first)

» Bitmapped cartridge fonts

» Scalable cartridge typefaces

* Bitmapped internal font

* Scalable internal typefaces

If there is more than one bitmapped font in the same loca-
tion with the same selection criteria, the font with the
specified orientation is selected (auto-rotation provides all
four orientations for any given font). If only scalable fonts
remain and more than one is available, selection is
arbitrary.

5-4 Using Fonts

A
Note l'a

Example:
Selecting Fonts
by Characteristic

Note l'a

If you are unfamiliar with selecting fonts by characteristic,
the PCL 5 Printer Language Technical Reference Manual ex-
plains how the printer selects fonts, discussing the font se-
lection parameters and the priority order of those
parameters.

This example demonstrates how to select fonts by charac-
teristic. Notice that the font selection commands are com-
bined into one command, Ec(s@p10h12v@s@b3T, for efficiency.
(It is assumed that all job and page setup commands have
been sent to the printer before sending the commands in
the example. Job and page setup are discussed in Chapters
2 and 3.)

E(8U Select the Roman-8 symbol set.

Ec(s@pldh12v@sPb3T Select fixed-spaced, 10-pitch, 12-
point, upright, medium, Courier.

ABCDEFGHIJL. . . Print text.
E(8U Select the Roman-8 symbol set.

Ec(s1pl4vPs3b4148T Select a proportionally spaced, 14-
point, upright, bold, Univers font.

MNOPQRSTUV... Print text.

When selecting fonts by characteristic as shown in this ex-
ample, the desired font will always be selected as long as it
is accessible to the printer. Keeping track of the last se-
lected font is not necessary as is the case when trying to use
an abbreviated command.

Font Selection Exceptions

In order to provide for some of the differences between bit-
mapped and scalable fonts, the following exceptions apply
to selecting scalable fonts and typefaces:

Using Fonts 5-5

5-6 Using Fonts

Note l'a

Symbol Set—The PCL 5 printers have many symbol sets
from which to choose when creating fonts. See the PCL 5
Comparison Guide for a complete list of symbol sets avail-
able to each PCL 5 printer. For information on user-defined
symbol sets, see Appendix D (the BUILD-SYM utility). See
the PCL 5 Printer Language Technical Reference Manual
for symbol set codes.

Pitch—For a monospaced scalable font or typeface, any
specified pitch is available within the range of the PCL
printer language. However, the pitch value is converted to a
corresponding point size value which is scaled by the Intelli-
font algorithm in the PCL 5 LaserdJet printers. The equa-
tion used to convert pitch to height (point size) is:

Height = 1/(Desired Pitch * (Spacing Value /8782) * 0.01383)

For the above equation, the TFM files provide the spacing
value (TAG 412), the Design Unit value (8782—TAG 408),
and the point size in inches (0.01383—TAG 406). For more
information about TFM files and TAG values, see Chapter
6, AutoFont Support.

The result of the height calculation is converted to the clos-
est point size in the range from .25 to 999.75 point. For ex-
ample, the pitch in the font header of a CG Times scalable
font is 5291. If the requested pitch is 10, then using the
above equation, the printer calculates the corresponding
point size as follows:

1/(10.00 * (5291/8782) * 0.01383) = 12.00 point

(See the example on the next page concerning selecting a
scalable typeface by specifying pitch without point size.)

Height—With scalable fonts and typefaces, you can specify
a font height from .25-point to 999.75-point, in increments
of one-quarter point.

Example:
Selecting a Scalable
Fixed-Pitch Typeface

Style—The style attribute in the current font header is two
bytes, allowing the capability to incorporate more styles in
addition to upright (0) and italic (1). Refer to the PCL 5
Printer Language Technical Reference Manual for more in-
formation about the style attribute.

Typeface—The typeface attribute in the current font
header occupies two bytes. Scalable typefaces supplied by
HP or Agfa may be designated using a two-byte typeface
value. This value is calculated by adding 4096 to the type-
face value listed in the HP PCL 5 Comparison Guide. (Refer
to the PCL 5 Printer Language Technical Reference Manual
for more information on how the typeface number is used.)

To select a scalable Courier typeface, select the following
attributes:

Ec(sdP Select fixed spacing.

Ec(sbH Select a pitch of 5 characters/inch.

Ec(s@S Select the upright style.

Ec(s0B Specify medium stroke weight.

Ec(s4099T Specify the scalable Courier type-
face.

In this case, the printer selects the scalable Courier type-
face and creates a 25-point font (using the equation above).
The height parameter is ignored, since the height of the
font is dependent on the pitch requested. Since typeface is
the lowest priority attribute, the correct typeface value
must be used in the selection command if a specific typeface
is to be selected. In this case, the correct typeface value for
Courier (from Agfa or HP) is 4099 (4096 + 3), although a
value of 3 achieves the same result. (See the HP PCL 5
Comparison Guide for the typeface values.)

Using Fonts 5-7

Primary and
Secondary Fonts

Example:

Using Primary and
Secondary Fonts

5-8 Using Fonts

In situations where users are frequently alternating be-
tween two fonts in a print job, using primary and secondary
fonts may improve both printer and system performance. If
a secondary font is designated, the software can switch be-
tween the primary and secondary fonts using the Shift In
and Shift Out control codes, providing an efficient font selec-
tion technique. The example below outlines how secondary

fonts may be used.

This example shows the use of primary and secondary fonts

for font selection.

Ec(@U

Ec)dU

Ec(s1p1dvPsdb4101T

Ec)s1pl4vPs3b4148T

<SO>

This is a Headline

<SI>

This is text copy

Select the ASCII symbol set as pri-
mary.

Select the ASCII symbol set as sec-
ondary.

Select a 10-point CG Times font as
primary, for use as a text font.

Select a bold, 14-point Univers font
as secondary, for use as a headline
font.

Use the Shift Out control code
(ASCII 14) to access the secondary
headline font.

Print a headline.

Use the Shift In control code (ASCII
15) to access the primary text font.

Print a paragraph using the text
font.

General Font
Management

Managing the
Download Process

Managing fonts involves giving the user a choice of fonts,
making sure the fonts are accessible (the hardware-based
fonts are installed or the soft fonts are downloaded), select-
ing the fonts when needed, and deleting them when the
memory they occupy is needed for another purpose.

This segment of the chapter describes managing the font
process so that the user knows which font cartridges must
be installed and which soft fonts downloaded. It also dis-
cusses downloading fonts to the printer and how auto-rota-
tion and scaling affect font management.

Managing fonts is a difficult task for an application to han-
dle. Users frequently generate pages containing many dif-
ferent fonts. Each font selected by the user must be either
an internal printer font, a font cartridge installed in the
printer, a LaserJet 4 SIMM-based font, or a bitmapped or
scalable font which has been downloaded to the printer.

Managing the font download process includes the task of
keeping track of the fonts needed to print the job correctly:

For printers without status readback, the application must
keep a record of the fonts used for a particular job. The ap-
plication can then make the information available to the
user, if desired, by means of a menu or a display. If the ap-
plication is using AutoFont Support, the GLUE.TXT file can
be read to obtain the current fonts available to the system
and then the required fonts can be downloaded to the
printer.

For the LaserJet 4 printer, the application must also keep
track of the fonts needed for a particular job. The PCL
status readback commands can be used to request the fonts
that are currently available in the printer. The application
can also read the GLUE.TXT file to see the fonts available
to the system. Then the application can download the re-
quired fonts that are not already in the printer. If the fonts
are not available for some reason, the application can notify
the user.

Using Fonts 5-9

Example:

Font Management

5-10 Using Fonts

Note l'a

This example outlines a way of managing fonts that pro-
vides the necessary fonts, only notifying the user if there is
some action to be taken:

1) As the application is loaded, it determines which fonts
are available to the user.

* The application should be aware of all resident fonts for
the device.

» System-level soft fonts should be available to the user.
The application can use the GLUE.TXT file to determine
which fonts are available on the system level.

» For Laserdet 4 printers, the application can use PCL
status readback commands to request the fonts that
the printer has access to, including cartridge fonts and
SIMM-based fonts. After the initial font status check, if
the application detects an off-line status, it should
recheck the availability of cartridge fonts.

2) While creating a document, the user chooses several
fonts from the list of available fonts provided by the
application.

3) The user sends the page for printing.

4) The driver downloads the required fonts that are not
already in the printer and prints the job.

A list of fonts required to print this job should be attached
to the file for future reference. Then the user can recreate
the same document later, when specific font information
related to the job has been forgotten.

Downloading Fonts

Example:
Downloading Fonts

Downloading fonts involves specifying a font ID number,
copying the font file to the printer, and then making the
font permanent (if desired). All the necessary escape se-
quences are already embedded in each font file so that a
DOS COPY command using the /B [binary] option success-
fully downloads the font. The following example demon-
strates two fonts being downloaded and used.

This example shows how to download bitmapped fonts to
the printer as permanent fonts. (This example assumes
that the proper job and page setup commands have already
been sent to the printer.)

Ec*c200D

COPY /B
HV120RPN.USP
PRN:

Ec*c200d5F

Ec*c201D

COPY /B
HV180BPN.USP
PRN:

Ec*c201d5F

Ec(0U
Ec(s1ph18vs3b4T

HEADLINE TEXT
Ec(s1ph12vsb4T

TEXT TEXT TEXT

Set the font ID number to 200.

Copy the file containing the 12-point
Helvetica medium font to the
printer using the /B option (binary

copy).

Specify as permanent the font with
ID number 200.

Set the font ID number to 201.

Copy the file containing the 18-point
Helvetica bold font to the printer us-
ing the /B option (binary copy)

Specify as permanent the font with
ID number 201.

Select the ASCII symbol set.

Select the 18-point, Helvetica bold
font as the primary font.

Print the headline.

Select the 12-point, Helvetica me-
dium font as the primary font for
use as a text typeface.

Print the paragraph text.

Using Fonts 5-11

5-12 Using Fonts

Making Fonts Permanent vs. Temporary

Downloaded fonts can be specified as either temporary or
permanent. Downloaded fonts are automatically designated
as temporary unless they are specifically set to permanent.

Both permanent and temporary fonts are “perishable data.”
Permanent fonts are not affected by reset conditions, but
are erased any time power is removed or memory is recon-
figured, which includes the following situations:

* The page protection status changes (all PCL 5 printers)
» The printer language changes (Laserdet 4/I1ISi only)
» The device resolution changes (LaserdJet 4 only)

Temporary fonts are also erased when power is removed or
memory is reconfigured, plus they are erased when the
printer is reset (icE, UEL, or RESET key). Essentially, tem-
porary fonts are available for the duration of the PCL job,
since they are erased under reset conditions, which happen
at the beginning and end of every PCL job.

The decision to make fonts permanent or temporary de-
pends on the number of users using the printer and the ap-
plications they are using. A font that will be used many
times throughout a print job but would never be used by
other jobs would best be designated as a temporary font.
Since temporary fonts are erased with a printer reset, the
next print job clears the temporary fonts from memory, free-
ing the space for other data.

Conversely, fonts that will be used by many users or by
many print jobs should be created as permanent fonts so
that they can be easily accessed without downloading them
repeatedly. In many cases, the best option is to allow the
user to choose whether the fonts will be downloaded as per-
manent or temporary.

Font Auto-Rotation

Note l'a

If a font is available in one orientation and a command se-
lects that font while in another orientation, the printer auto-
matically generates a new version of that font in the

current orientation. For example, if the printer is printing
using portrait 12-point ITC Garamond for one page of a
print job and then 12-point ITC Garamond is requested on
the next page (which happens to be landscape), the printer
will automatically rotate the necessary characters to create
12-point landscape ITC Garamond if those characters don’t
already exist in the printer.

There are a few things to keep in mind concerning font auto-
rotation.

» Fonts are auto-rotated one character at a time, as
needed. Only those characters that will be printed on the
page are rotated—not the entire font.

* Areset eliminates fonts that have been auto-rotated.

* Auto-rotated fonts not used on the current page are
automatically deleted when the memory they occupy is
needed elsewhere.

e The auto-rotation process uses a certain amount of
overhead, requiring more user memory than would
otherwise be necessary. If the application requires close
to the available user memory, the auto-rotation process
could use enough extra memory to cause a 20 MEMORY
OVERFLOW error message.

These four points also apply to font scaling. The printer
automatically scales only those characters that are needed,
and will delete them if they are not used on the current
page when the memory they occupy is needed elsewhere.
Scaled fonts are also erased with a printer reset.

Using Fonts 5-13

Working With Fonts

Justifying Text
When Using
Proportional Fonts

5-14 Using Fonts

Note l'a

This segment of the chapter gives examples of some of the
more common ways that software developers use fonts
within their applications.

Justification of proportionally spaced characters is an essen-
tial part of many applications/drivers. To accomplish propor-
tional justification, information is required regarding the
space occupied by each character. The horizontal escape-
ment value, which represents the distance from the charac-
ter reference point of one character to the character
reference point of the next one, is essential for justifying
text. (For highly precise justification, an application may
also use the left extent and right extent values for the first
and last characters in a line.)

The horizontal escapement for each character can be read
from a TFM file. For scalable fonts, horizontal escapement
is in Design Units. When converting from Design Units to
dots, the “dot” value may be fractional (for example, 24.36
dots). The PCL 5 Laserdet printers round these values to
the nearest whole dot. Note that the rounding is not cumu-
lative. In other words, if you are justifying 10 characters
that are 10.25 dots each, each character’s width is calcu-
lated as 10 dots, not (10.25 * 10)/10. (Refer to Chapter 6 for
more information on accessing TFM files.)

In most instances, the application’s TFM reader routine has
already read the font information it requires from the TFM

files and saved it in a font-specific driver file. The following

example shows horizontal escapement values that were ob-

tained from the TFM files to correctly space each character

in a line.

Example: This example demonstrates proportional text justification.
Justifying Text The words “This is a test, test, test.” are justified in a 2-inch
column. To justify text, the horizontal escapement value for
each character can be read from the font’s associated TFM
file. (This data is for a 10-point Times Roman font.)

ASCII Decimal Horizontal
Character Equivalent Escapement (In Dots)

T 84 26

h 104 23

i 105 12

S 115 18
<SP> 32 11
i 105 12

S 115 18
<SP> 32 11
a 97 21
<SP> 32 11
t 116 14

e 101 18

S 115 18

t 116 14

, 44 10
<SP> 32 11
t 116 14

e 101 18

S 115 18

t 116 14

, 44 10
<SP> 32 11
t 116 14

e 101 18

S 115 18

t 116 14
46 10
437

Using Fonts 5-15

Using the horizontal escapement values above and assum-
ing the column width is two inches (600 dots), send the fol-
lowing commands to the printer:

Ec(@U Select the ASCII symbol set
Ec(s@pl@vds3b5T Select a 10-point, bold, Times Ro-
man font

This<SP>Ec*p+32Xis<SP>Ec*p+33Xa<SP>Ec*p+33Xtest,
<SP>Ec*p+33Xtest,<SP>Ec*p+32Xtest.

Each word is separated by a space control code, <SP>, and
a relative cursor move to the next character.

To calculate the total cursor move for the line, the horizon-
tal escapement values are added, totaling 437 dots. With a
column width of 600 dots (two inches), there are 163 extra
dots remaining to add to the five inter-word spaces (600 mi-
nus 437 equals 163 dots). Dividing the number of dots by
five (for the five spaces) leaves 32.6 dots per space (163/5 =
32.6). Since the PCL 5 LaserdJet printers do not accept frac-
tional dot values, an extra dot must be added to three of the
spaces (.6 * 5 = 3 dots).

Note "ﬂ To reduce the amount of data and make the software appli-
cation more efficient, the <SP> control code movement of 11
dots can be incorporated into the cursor positioning com-
mands as follows:

Thistc*p+43Xistc*p+44Xakc*p+44Xtest,Ec*p+44Xtest,Ec*p+43
Xtest.

5-16 Using Fonts

Adjusting Line
Spacing to
Correspond to
Point Size

Note l'a

Example:
Adjusting Line
Spacing

Text leading, the vertical line spacing between lines of text,
directly affects readability. As a general rule, leading for
body text should be approximately 120% of the point size se-
lected. For example, suitable leading for a 10-point font is
12 points (120% of 10).

Although 120% of the point size is a recommended default
spacing value, applications should allow users to adjust
leading to suit their needs. Headlines, for example, are gen-
erally set with tighter leading than body text, and the exact
value depends on the type of application and what the
writer/designer is trying to accomplish with the headline.

In this example, two lines of text are printed at the default
line spacing, and then line spacing is adjusted using the ver-
tical motion index (VMI) command. The third line shows
that the line spacing change has taken effect. Note that the
line spacing command doesn’t take effect until a line feed oc-
curs. (It is assumed that the proper job setup and page
setup commands precede the commands in this example
[see Chapters 2 and 3].)

DOWNLOAD Download an ASCII, 12-point, bold
Helvetica font.

Ec(QU Select the ASCII symbol set.

Ec(s1p12vPs3b4T Select a proportionally spaced, 12-

point, upright, bold Helvetica font.
Text text text<LF> Send the first line of 12-point text.

Ec&120.6C Set line spacing to 20.6/48 inches
per line using the VMI command.
(See the following discussion on calcu-
lating VMI.)

Text text text<LF> Send another line to see current
spacing (default spacing still in ef-
fect until line feed <LF'> sent).

Text text text Send the third line of 12-point text.

Using Fonts 5-17

Note l'a

Using Transparent
Print Data to Access
Special Characters

5-18 Using Fonts

How to Calculate the VMI Value
Use VMI to designate line spacing:
1) Calculate a leading value (120% * 12 point = 14.4 point)

2) Convert the leading value to inches (14.4 points per line /
72 points per inch = .2 inches per line)

3) Set VMI to .2 lines per inch (.2 * 48 = 9.6 VMI)

The formula for calculating VMI can be reduced to:
(leading as % of point size * point size * 2/3).
In the example above, 120% * 12-point * .6666 = 9.6.

In some situations, it may be necessary to print the charac-
ters in the “control code range” of the symbol set, in other
words, those characters occupying the positions decimal 7
through 15 and 27. Normally, if the printer receives a re-
quest to print a character in this range, a control code is exe-
cuted. In order to print a character that is located in this
range, the transparent print data command must first be
sent to the printer.

The following example shows how to access characters in
the control code range.

Example:
Accessing Special
Characters

Underlining
Characters

This example shows how to access control characters using
the transparent print data command:

Ec(10U Select primary symbol set (PC-8).

Ec&plX Send the transparent print data
command. This command desig-
nates that the following byte should
not be acted upon, but printed in-
stead.

27 Send decimal 27 to the printer. In-
stead of executing the escape control
code, the printer will print the left-
pointing arrow symbol.

Underlining may be accomplished using the underline com-
mand or using rectangular area fill (rules). Other methods
of underlining (such as using raster graphics) should be
avoided since they can cause performance problems due to
the overhead associated with them.

The PCL 5 Laserdet printers have the capability to print
what is called a floating underline (Ec&d3D), meaning that
the underline distance is determined by the greatest under-
line distance below the baseline of all the fonts printed on
the current line of text. This feature is beneficial in that it
ensures that all underscore lines on one line of text are at
the same level, even if they aren’t the same thickness.

Every font has a specific underscore thickness and a specific
distance from the baseline to the center of the underscore,
the underscore depth. The underscore thickness and under-
score depth for each font are obtained by reading the TFM
file for that font (see Chapter 6 for information about read-
ing the TFM files). The printer automatically uses these val-
ues when the floating underline is enabled. When using the
rectangular area fill command to print underscore lines, the
underscore thickness and underscore depth values can be
read from the TFM files and used to determine the desired
position and thickness of the underline.

Using Fonts 5-19

Font Headers

5-20 Using Fonts

Note l'a

Prior to the introduction of TFM files, the Laserdet font
header was used to provide font metric data to software ap-
plications, most frequently for font spacing tables. With the
introduction of the Tagged Font Metric (TFM) file and a
more universal font support approach, reading the font
header is no longer the preferred method of font support
(see Chapter 6 on “AutoFont Support”). However, the font
header for bitmapped fonts continues to contain a useful
quantity of font metric information.

Several font header fields that were reserved and/or not rec-
ognized by PCL 4 printers are defined for use by PCL 5
printers. For those developers that are creating LaserdJet-
compatible fonts, the PCL 5 Printer Language Technical Ref-
erence Manual contains a reference specification for the
scalable font header and the bitmapped font header, includ-
ing information on creating bitmapped fonts with com-
pressed data.

To allow for specific style selection, the style byte is two
bytes in length. The typeface byte is also two bytes long to
enable differentiation between multiple versions of the
same typeface. (With the two-byte value, typefaces can be
differentiated by vendor; for example, CG Times vs. Times
Roman.) See the Font Selection chapter of the PCL 5
Printer Language Technical Reference Manual for more
detailed header information.

AutoFont Support

Contents

Introduction 6-1
TFM File Structure 6-2
Header Structure. 6-3
Directory Structure 6-6
Tag Entry Structure 6-7
TEM Usage.coiii e e e iieee e 6-10
TFM Tag Descriptions 6-11
Font Identification. 6-12
Font Parameters 6-23
Character Parameters...................... 6-27
Kerning Information 6-29
DeviceData 6-35
PANOSE Numbers. 6-36
“Glue” File Description and Usage 6-37
Supported Fonts 6-47
Comparing Past Font Support With TFM Support .. 6-49
AutoFont Support. 6-52
Hard-coding TFM Data..................... 6-52
TFM Reader Integration.................... 6-53
Available Tools for TFM Reader Integration 6-55
The TFM Reader Program 6-56
End-User Considerations 6-57
Usingthe TFM Reader 6-58
TFM Reader Data Flow. 6-59
Modifying the TFM Reader. 6-61
Accessing the TFM Data Structure 6-62

Supplied TEM Fileso vooveeeeeeeeen 6-66

File Naming Convention 6-67

Sample TFM Implementation................ 6-68
Selecting Fonts Using TFM Information 6-73
Symbol Set 6-74
SpPacing . ..ot 6-74
Pitch ... 6-74
Height (Point Size)......................... 6-75
Style . ..o 6-75
Stroke Weight. 6-78
Typeface 6-79
Locatingthe TFM Files 6-79
TheGlueFile 6-80
Creating TFM Files 6-81
Available Tools 6-82
The TFMWriter.ccvvnvnon... 6-82
PANOSE Numbers......................... 6-88
Modifying the TFM Writer. 6-88

Compiling the TFM Writer 6-100

Introduction

Note l'ﬂ

AutoFont Support provides immediate support for acces-
sory type. It is an industry standard font metric specifica-
tion that uses the Tagged Font Metric (TFM) file format as
its base. AutoFont Support was implemented at the time
the Laserdet III printer was introduced, and has been
adopted by industry leading software and hardware manu-
facturers as an efficient and time-saving way to manage

type.

On the AutoFont support disk that is shipped with each HP
font product, your customers receive an AutoFont Support
Installer utility. The AutoFont Support Installer copies each
of the TFM files associated with the new typefaces to the
user’s hard disk, and updates the “glue” file. The glue file
serves as a link between the font file and its associated
TFM file, keeping track of the typefaces, the associated
TFM files, and the locations of these files.

Hewlett-Packard supplies font metric information in the
TFM format only. Font spacing tables are not provided for
each font product.

To help you update your application for AutoFont Support,
HP provides a TFM Reader program module and some re-
lated tools. This chapter discusses the TFM file format and
how to use the HP-supplied tools to implement font support
in your product.

Auto Font Support 6-1

TFM File Figure 6-1 shows the TFM file format. It consists of three
Structure types of structures: (1) the header, (2) one or more directo-
ries, and (3) the tagged data.

c > Header

Directory

TAG 1

TAG 2

e TAG 3

o] |
O |
o] |

TAG n]

Next Directory

i

Tag Data
[tem

Tag Data
[tern

o]
O
o}

Tag Data
[tern

Figure 6-1. TFM File Structure

6-2 AutoFont Support

Header
Structure

Virtually all of the information in the file is accessed
through 32-bit offsets relative to the beginning of the file
rather than through fixed locations.

The file structure is intended for use in two computing envi-
ronments: the 8086 and the 68000 microprocessor family.
The difference between the two processors is the byte order
in which integer values are stored. The first data structure
in the file indicates what format to expect.

There is only one header structure in the file, and it is the
first thing in the file. This structure contains data located
in an absolute file position. Figure 6-2 shows the byte struc-
ture of the header and the following explanation describes
the header fields.

Byte P
0 49n L Byte Order
1 49h) Indication
Major
2 oh Mi : y L Version
Inor, Number
3 2h Oh | Sub-Minor
4 O0h
5 O0h
—— 4 Byte Offset
6 O0h
7 08h P
8 O0h
9 O0h
o Reserved
o Space
O
n O0h P

Figure 6-2. TFM Header Structure

Auto Font Support 6-3

6-4 AutoFont Support

» Bytes 0-1: Byte Order

The first two bytes of the file indicate the byte order for the
rest of the file.

byte 0 = 49h, byte 1 = 49h
or
byte 0 = 4Dh, byte 1 = 4Dh

These two values indicate the byte ordering of data in the
file. The character 49h, ASCII character I, indicates that
the format is intended for the Intel family of processors
where the most significant bytes follow the least significant
bytes.

The character 4Dh, ASCII character M, indicates that the
format is intended for the Motorola family of processors
where the least significant bytes follow the most significant
bytes.

» Byte 2: Major Format Version

This byte is used to express the major version number of
the file format. For example, Version 1.2.0 would be indi-
cated with a 01h in this byte.

If new data types are added the major version number
should change. Development versions should always start
with the most significant bit set to one. It is up to an appli-
cation writer to choose whether to accept or ignore a version
under development.

» Byte 3: Minor and Sub-Minor Format Version

This byte is broken into two equal parts. The upper four
bits represent the minor version number and the lower four
bits represents the sub-minor version number. For example,
version 1.2.0 would be indicated with a 20h in this byte.

If new tag values are defined for the format the minor ver-
sion number should change. If data or tags are being cor-
rected then the sub-minor version number should change.
It should be noted that the sub-minor version number indi-
cates a correction. Version 1.2.0 and 1.2.15 files may show

different outputs but the definitions for the tags and data
types in both are the same.

» Bytes 4-7: Directory Offset

These four bytes in the header are used as a 32-bit offset
from the beginning of the file to the first directory entry in
the file. The first byte in the file is at offset zero (0). All en-
tries in the file should be placed on word boundaries. In this
way all offset values in the file should be even. An odd
value would indicate that an error has occurred.

» Bytes 8-n: Reserved Space

This area of the header is reserved for font vendor use only.
Reserved space will always terminate on a word boundary.
This allows the first directory entry in the file to be on a
word boundary. This area is set aside to allow font vendors
to place internal information, such as a file version number,
into the TFM file.

Auto Font Support 6-5

Directory Figure 6-3 shows the structure of a Directory Entry. Each di-
Structure rectory consists of a Tag Entry Count, one or more tag en-
tries, and an offset to the next directory in the file.

« Number of
Tag Ent 00h L Tag Entries
ag =niry In directory
49h
Number 1
© 2 | First Tag
Entry
4+
14
I Second Tag
Entry
<+
o}
o
o}
4+—
™ (4[212) I Last Tag
Entry
> «—
((n+1)"12)+2 00h
((n+1)12)+3 00h Offset 1o
((n+1y12)+4 00h Next Directory
((n+1)"12)+5 00h
<+

Figure 6-3. TFM Directory Structure

6-6 AutoFont Support

Tag Entry
Structure

» Bytes 0-1: Number of Tag entries

The first 2 bytes in a directory contain a 16-bit integer
value indicating the number of Tag Entries to expect in the
directory. The Tag Entries immediately follow the first

2 bytes of the directory, and they must be ordered sequen-
tially, based on the tag value. Each tag occupies 12 bytes.

Following the last Tag Entry is a 4-byte file offset indicating
the location of the next directory in the file. If the value is
zero, then there are no more directories in the file.

The size of the directory structure can be determined with
the following equation:

m = number of tag entries

(m*12)+6 = size in bytes

Figure 6-4 shows the structure of a Tag Entry. The fields
are defined as follows:

e Bytes 0-1: Tag Value

These two bytes contain a 16-bit, unsigned integer value
specifying the type of data associated with the tag entry,
e.g., 423 = Capheight, 425 = Ascent, 411 = Stroke Weight,
and so forth.

Auto Font Support 6-7

6-8 AutoFont Support

* Bytes 2-3: Data Type

This is another 16-bit unsigned integer value used to
specify the type of data to expect in the data field. Current
data types are defined in the “Data Types” table on the next

page.

Byte

01h

AOh

O0h

01h

O0h

O0h

O0h

01h

O0h

O0h

00h

01h

Tag Value

Data Type

Data Block
Size

Data or
Offset
to Data

Figure 6-4. Tag Entry Structure

* Bytes 4-7: Data Block Size

This is a 32-bit unsigned value indicating the size of the
data block associated with the tag. The size of the data
block is the units of the data type.

Data Types
Value Data Type Description

1 BYTE 8-bit unsigned integer.

2 ASCII Null terminated array of 8-bit
bytes.

3 SHORT 16-bit (2 bytes) unsigned
integer.

4 LONG 32-bit (4-bytes) unsigned
integer.

5 RATIONAL Two LONG’s (8-bytes) where
the first long represents the
numerator of a fraction and the
second the denominator.

16 SIGNED BYTE 8-bit 2’s complement signed
integer.

17 SIGNED SHORT | 16-bit 2’s complement signed
integer.

18 SIGNED LONG 32-bit 2’s complement signed
integer.

For example: if the data type indicated a SHORT integer
and the data block size is 8 then the data consumes 16
bytes (8 * the length of a SHORT integer).

The length of the ASCII data type includes the terminating
null character. The string length is actually one less than
the size indicated.

If the calculated data block size is odd, the block should be
padded with a null byte to align the data word boundaries.

Auto Font Support 6-9

» Bytes 8-11 = Data / Offset

The last 4-byte segment of the structure is either a file off-
set to the data in the file or it is the data, if the data will fit
within the 4 bytes (e.g. If the data length * sizeof(data type)
is less than or equal to 4, then the data is contained here.).

TFM Usage To successfully read a tagged file format, an application
must recognize two things:

» Aset of tag values
» Data types supported in the file.

There are three types of tags which may be found in a TFM
file:

* Level 1 - Required

» Level 2 - Optional (this information can be derived from
level 1 tags)

» Level 3 - Optional (this tag contains information general
to the font or TFM file; it has no impact on the metric
information within the file)

6-10 AutoFont Support

TFM Tag
Descriptions

Numeric values in the following definitions are given as
decimal values. Unless otherwise specified all metric units
used are Design Units. Design Units are defined by tag 408.

» Subfile Type (Level 1)

Tag = 400 (190h)

Type = SHORT

Length =1
This tag describes how to use the symbol map (Tag 403).
For the value zero, the characters are mapped to the Mas-
ter Symbol List. For the value one, they are mapped to the
symbol set they are representing. For the value two, charac-

ters are mapped to a Unicode list. The types are listed be-
low:

0 — MSL list
1 — Symbol Set list

2 — Unicode list
» Copyright information (Level 3)
Tag =401 (191h)

Type = ASCII
Length = # of bytes in the ASCII string plus one null
byte.

This field contains copyright information, trademark infor-
mation, terms of use, etc.

» Comment Information (Level 3)
Tag = 402 (192h)

Type = ASCII
Length = # of bytes in the ASCII string plus one null
byte.

This field contains comment information.

Auto Font Support 6-11

Font « Symbol Map (Level 1)
Identification
Tag = 403 (193h)

Type = SHORT
Length = # of Characters contained in the file.

This tag specifies the number of symbols contained in the
font file and the array of symbols in the TFM file as
mapped by tag 400.

* Symbol Set Directory (Level 1)
Tag = 404 (194h)
Type = SHORT
Length = # of directory entries * 14 bytes.

This tag specifies what symbol sets have been predefined
and can be derived from the symbols available in the font
file. The directory structure can be seen in Figure 6-5.
There may be one or more directories in the file with each
directory consisting of three offsets and an integer value.
Each element of the structure is described as follows:

* Symbol Set Name Offset (LONG). These four bytes are
an offset to an ASCII string which identifies the symbol
set being defined.

» Symbol Set Selection String Offset (LONG). This is a
four-byte offset to a device-specific selection string based
on the symbol set. For PCL printers, the string would
contain the two unique characters used in symbol set
selection.

* Symbol Set Index Array Offset (LONG). This is a four
byte offset to an array that contains indices from the
symbol set to the symbol map. The array should be the
length of the associated symbol set. An array element is
used to locate the metrics for the character with the
same index in the symbol set.

e Array Length (SHORT). This value indicates the length
of the symbol set index array.

6-12 AutoFont Support

Symbol Set Directory Entry Structure

Offset to Symbol Set Name

Offset to Symbol Set Selection String

Offset to Symbol Set Index Array

— Length of Symbol Set Index Array

o
o
o

Remaining Directory Entries

v

Symbol Set Directory

tagh = xxx pC-8 _
type = xxx Mapping for PC-8
length = xxx Symbol Set Index
Array
10U

Name 1
Selection String / 147
Symbol Set Index Array

148
Symbol Set Length

Name

Selection String

Symbol Set Index Array
Symbol Set Length

Mapping for next
Symbol Set Index
Array

Figure 6-5. Symbol Set Directory Entry Structure

Auto Font Support 6-13

6-14 AutoFont Support

* Unigue Association ID (Level 3)

Tag = 405 (195h)

Type = ASCII

Length = 13
This tag defines a method for “stamping” a metric file and
the associated font file with a unique ID. The format of the
stamp is an ASCII string containing the following: the year,
month, day, hour, minute, and a two-digit random number.

For example, 881018010601 would translate to 1988, Octo-
ber, the eighteenth, at 1:06 AM with a random number of 01.

» Point (Level 1)
Tag = 406 (196h)
Type = RATIONAL
Length =1

This tag is used to specify the “exact” size, in inches, of the
point being referred to in this file. Depending on the type de-
signer, a point may be 1/72 inch, 1/72.307 inch, or any num-
ber of other sizes.

» Nominal Point Size (Level 1)
Tag =407 (197h)
Type = RATIONAL
Length=1

This tag is where the optimal display point size for the asso-
ciated font should be indicated. This is the point size for
which the units in the metric file are exact.

» Design Units (Level 1)
Tag =408 (198h)
Type = RATIONAL
Length =1

The Design Units are the same units used in the remainder
of the file for the font metrics. The Design Units are the
number of units used per the Nominal Point Size. See “Ex-
ample: Using TFM Values in Intellifont Calculations” for an
example of converting Design Units to physical units.

Auto Font Support 6-15

» Type Structure (Level 1)
Tag =410 (19Ah)

Type = BYTE
Length =1
This tag is a means for indicating the surface treatment of
the typeface.

Structure Tag Value
Solid 0-7
Outline 8-15
Inline 16-23
Contour 24-31
Solid with Open Shadow 32-39
Open with Solid Shadow 40-47
Inline with Shadow 48-55
Contour with Shadow 56-63
Pattern 1 64-71
Pattern 2 72-79
Pattern 3 80-87
Pattern 4 88-95
Pattern 1 with Shadow 96-103
Pattern 2 with Shadow 104-111
Pattern 3 with Shadow 112-119
Pattern 4 with Shadow 120-127
Inverse 128-135
Inverse w/ Open Border 136-143
Reserved 144-255

6-16 AutoFont Support

“Solid” is by far the most common surface treatment. A solid
typeface has a surface of one uniform color. There are no fea-
tures of the surface to give the typeface any special

effects.

The next most common surface treatment is “outline”. The
surface of an outlined letter appears identical to the back-
ground of the page.

» Stroke Weight (Level 1)
Tag =411 (19Bh)
Type = BYTE
Length=1

Stroke weight describes the thickness of the strokes that
compose the characters in a typeface.

Stroke Weight Tag Value
Ultra-Thin 0-17
Extra-Thin 18-34
Thin 35-51
Extra-Light 52-68
Light 69-85
Demi-Light 86-102
Semi-Light 103-119
Medium 120-136
Semi-Bold 137-153
Demi-Bold 154-170
Bold 171-187
Extra-Bold 188-204
Black 205-221
Extra-Black 222-238
Ultra-Black 239-255

Auto Font Support 6-17

6-18 AutoFont Support

The values are assigned as a range rather than as a specific
number. This allows other systems of weights to be mapped
into this range.

» Spacing (Level 1)
Tag = 412(19Ch)
Type = SHORT
Length =1
Whether a font’s spacing is fixed or proportional should be

indicated here.

If the value is zero then the font is proportionally spaced.
Any value other than zero indicates that the font is fixed
pitch and the value in this field is the pitch given in Design
Units.

» Slant (Level 1)
Tag = 413 (19Dh)
Type = SIGNED SHORT
Length =1

A slant is given in 1/100 degrees. No slant is indicated by a
zero value. A positive value is clockwise from the vertical
and a negative value is counter-clockwise.

» Appearance Width (Level 1)

Tag = 414(19Eh)

Type = BYTE

Length =1
This tag is a means for indicating that the font is designed
as a variation on what would be considered the normal ap-
pearance for the typeface. The type style is the same, but

the font appears to be either wider or narrower than usual
for this style of typeface.

Width Tag Value
Ultra-Ultra-Condensed 0-20
Ultra-Condensed 21-47
Extra-Condensed 48-74
Condensed 75-101
Semi-Condensed 102-128
Normal 129-155
Semi-Expanded 156-182
Expanded 183-209
Extra-Expanded 210-236
Ultra-Expanded 237-255

Auto Font Support 6-19

» Serif Style (Level 1)
Tag = 415(19Fh)
Type = BYTE
Length =1
This field classifies the serif style.

Serif Style Value
Sans Serif Square 0-17
Sans Serif Round 18-36
Serif Line 37-55
Serif Triangle 56-74
Serif Swath 75-93
Serif Block 94-112
Serif Bracket 113-131
Rounded Bracket 132-150
Flair Stroke 151-169
Script Non-connecting 170-188
Script Connecting 189-207
Script Calligraphic 208-226
Script Broken Letter 227-255

6-20 AutoFont Support

» Type Style
Tag = 416(1A0h)
Tag 416 is obsolete.
» Typeface (Level 2)
Tag =417(1A1h)

Type = ASCII
Length = # of bytes in the ASCII string plus one null
byte.

This tag may be used to provide a name that the end user
will recognize and use to select a font.

» Typeface Source (Level 3)
Tag = 418 (1A2h)

Type = ASCII
Length = # of bytes in the ASCII string plus one null
byte.

This tag contains the name of the font designer or supplier.

Auto Font Support 6-21

6-22 AutoFont Support

» Average Width (Level 2)
Tag = 419(1A3h)
Type = RATIONAL

Length =1

Average width is calculated by first multiplying the escape-
ment value of each lowercase character in the typeface by
the weights listed in the following table, then taking the
sum of all these products and dividing the sum by 1000:

((escapement value for “a” * 64) +(escapement value of “b” *
14) +. .. (escapement value for “space™166))/1000

Character Weight Character Weight
a 64 0 56
b 14 p 17
c 27 q 4
d 35 r 49
e 100 S 56
f 20 t 71
g 14 u 31
h 42 v 10
i 63 w 18
j 3 b 3
k 6 y 18
1 35 zZ 2
m 20 space 166
n 56

These weights are based on the frequency of use in the Eng-

lish language.

e Maximum Width (Level 2)
Tag = 420(1A4h)
Type = SHORT
Length =1

This is the largest Blackwidth of any character in the font
(Blackwidth is the distance between the Left Extent and
the Right Extent as shown in Figure 6-7).

Font Parameters Font parameters pertain to the font as a whole rather than
individual characters (see Figure 6-6 below).

A A 4 Uppercase

Lowercase cgp Lowercase Accent

x-Height ﬁ%?gt?tt Height Ascent Height agcent
vV ¥ v

Lowercase Descent Descent

t }

Figure 6-6. Font Metrics

Auto Font Support 6-23

6-24 AutoFont Support

* Interword Spacing (Level 2)

Tag = 421 (1A5h)

Type = SHORT

Length =1
This is the recommended spacing to use between words.
Normally this is equivalent to the width of the space charac-
ter. If a space character is not defined, use a space that is at

least equal to the lowercase i, and no greater than the 1 EN
which is generally the width of the uppercase N or 1/2 EM.

» Recommended Line Spacing (Level 2)

Tag = 422(1A6h)

Type = SHORT

Length =1
This is the tightest recommended line spacing for the text,
baseline to baseline. If this tag is not present, the recom-

mended line spacing for the same text point size is the point
size plus 20%.

» Capheight (Level 2)
Tag =423 (1A7h)
Type = SHORT
Length =1

The height of the uppercase letters in the font. Usually the
height of the capital H.

» Xx-height (Level 2)
Tag = 424(1A8h)
Type = SHORT
Length =1

x-height is the height of the lowercase letters in the font. It
is usually specified as the height of the lowercase x.

» Ascent (Level 2)
Tag = 425(1A9h)
Type = SHORT
Length =1
The distance from the baseline to the highest printed mark
of any character in the font.
» Descent (Level 2)
Tag = 426(1AAh)
Type = SIGNED SHORT
Length =1
The distance from the baseline to the lowest printed mark
of any character in the font.
» Lowercase Ascent (Level 2)
Tag =427 (1ABh)
Type = SHORT
Length=1
The distance that the ascenders of lowercase letters extend

above the baseline. This value is typically specified for a
lowercase d.

» Lowercase Descent (Level 2)
Tag = 428 (1ACh)

Type = SIGNED SHORT
Length =1

The distance that the descenders of lowercase letters ex-
tend below the baseline. This value is typically specified for
a lowercase p.

Auto Font Support 6-25

6-26 AutoFont Support

» Underscore Depth (Level 1)
Tag = 429(1ADh)
Type = SIGNED SHORT
Length =1

This is the distance from the baseline to the center of the
underscore. A negative number states the underscore is be-
low the baseline, and a positive number states the under-
score is above the baseline.

» Underscore Thickness (Level 1)
Tag = 430 (1AEh)
Type = SHORT
Length =1
This is the thickness of the underscore.
» Uppercase Accent Height (Level 2)
Tag = 431 (1AFh)
Type = SHORT
Length =1

This is the highest point above the baseline at which any
printed mark of an uppercase accent mark will appear.

» Lowercase Accent Height (Level 2)
Tag = 432 (1BOh)
Type = SHORT
Length=1

This is the highest point above the baseline at which any
printed mark of a lowercase accent mark will appear.

Character Refer to Figure 6-7 for the tag values described in this section.
Parameters

Y

-+
(-X_Escapement-ﬂ
< RightExtant» §
' Escapement
Ascent /Pomt
Esxggg:rﬁiant R $Z 0 A _‘l BlackHeight
\ 4 Baseline *y
Character A —
Reference
pomt Underscore
Descent Depth
L I \ 4
—/
LeftExtent __underscore
width
le—F Blackwidth —»

Figure 6-7. Character Metrics

Auto Font Support 6-27

6-28 AutoFont Support

» Horizontal Escapement (Level 1)

Tag = 433(1B1h)

Type = SHORT

Length = # of characters
This is the recommended horizontal offset, in Design Units,
from the Character Reference Point (CRP), to the horizontal
location of the next character in sequence, assuming the
same point size and same typeface. A right escapement is a
positive value while a left escapement is a negative value.

This value is normally used in conjunction with the Vertical
Escapement to locate the CRP for the next character.

» Vertical Escapement (Level 1)
Tag = 434(1B2h)
Type = SHORT
Length = # of characters

This is the recommended vertical offset, in Design Units,
from the CRP, to the vertical location of the next character
in sequence, assuming same point size and same typeface. A
positive value indicates an upward escapement while a
negative value indicates downward escapement. This value
is normally used in conjunction with the Horizontal Escape-
ment to locate the CRP for the next character.

» Left Extent (Level 1)
Tag =435 (1B3h)
Type = SIGNED SHORT
Length = # of characters

This is the position of the leftmost extension in the charac-
ter’s design relative to the CRP.

* Right Extent (Level 1)
Tag = 436 (1B4h)
Type = SHORT
Length = # of characters

Kerning
Information

This is the position of the rightmost extension in the charac-
ter’s design, relative to the CRP.

e Character Ascent (Level 1)
Tag =437 (1B5h)
Type = SHORT
Length = # of characters

This is the position of the topmost extension in the charac-
ter’s design, relative to the CRP.
» Character Descent (Level 1)

Tag = 438 (1B6h)

Type = SIGNED SHORT

Length = # of characters

This is the position of the lowest extension in the charac-
ter’s design, relative to the CRP.

This section lists the tags related to kerning. For general in-
formation about kerning, see the “Kerning” discussion in Ap-
pendix G.

» Kern Pairs (Level 2)
Tag = 439(1B7h)
Type = SHORT
Length = # of character pairs*3+1

This tag is used as a structure containing the following data:

» # Pairs (SHORT). The first two bytes form an unsigned
integer (SHORT) value indicating the number of kern
pairs defined.

The following structures contain the data for each of the

kern pairs. It is repeated for each pair.

¢ Charl (SHORT). This is the index value for the first
character in the pair.

e Char2 (SHORT). This is the index value for the second
character in the pair.

Auto Font Support 6-29

* Kern (SIGNED SHORT). This is a signed integer value
indicating the recommended amount by which to kern
the two characters. The kern value is added to the
escapement value of the first character. A positive value
means increased spacing and negative means decreased
spacing. Figure 6-8 shows the structure of this tag data.

Number of Pairs

1st Char. Index

First Pair 2nd Char. Index

Signed Kern Value
in Design Units

1st Char. Index

Second Pair 2nd Char. Index

Signed Kern Value
in Design Units

[olye

Figure 6-8. Pair Kern Information

6-30 AutoFont Support

» Sector Kern Information (Level 2)
Tag = 440(1B8h)
Type = SHORT

Length = # of characters * (number of sectors per
character * 2 +1) + 2

This tag is also used as a structure and is similar to the
pair kern structure. This structure contains the following
data:

» # Characters (SHORT). The first two bytes form an
unsigned integer value indicating the number of
characters for which sector kern data is assigned.

» # Sectors (SHORT). An unsigned integer value indicating
the number of sectors to expect with each character.

The following structures are repeated for each character
that has sector kern data.

* CharIndex (SHORT). An unsigned integer value used as
an index to designate the character whose sector
information follows.

» SectorLeft (SIGNED SHORT). This is an array of signed
integers containing the sector values for the left side of
the character. The length of the array is defined by the
Sectors value set above. The first element in the array
corresponds to the sector at the top of the character. That
value is followed by the next sector and the sequence
continues on down through the array. Positive values
indicate kerning to the right and negative to the left.

» SectorRight (SIGNED SHORT). The array for the right
sector values immediately follows the array for the left
side and has exactly the same format.

Figure 6-9 illustrates the Sector Kern structure.

Auto Font Support 6-31

Number of Characters in List

Number of Sectors
per Character

1st Character Index

Sector 1L\

Sector 2L

Data for Left Side

Sector 3L of Character

Sector 4L

First

Character: Sector nL
Data

Sector 1R

Sector 2R

Sector 3R Data for Right Side
of Character

Sector 4R

Sector nR

e}
e}
O

Figure 6-9. Sector Kern Information

6-32 AutoFont Support

» Track Kern Information (Level 2)
Tag = 441(1B9h)
Type = SHORT
Length = # of tracks * 5 + 1

This tag is structured as follows:

o #Tracks (SHORT). This is an unsigned integer value
indicating the number of tracks which are defined.

The following structures are repeated for each track that is
defined. The tracks must be ordered from the tightest to
loosest kerning.

o #TValue (SIGNED SHORT). This is a signed integer
value indicating the relative tightness of the track. The
larger the negative number, the tighter the kerning.

* MaxSize (SHORT). This is an integer value, in Design
Units, which indicates the largest type size to which this
track kern information is applied.

* MinSize (SHORT). This is an integer value, in Design
Units, which indicates the smallest type size to which
this track kern information is applied.

* MaxKern (SIGNED SHORT). This is a signed integer
value which indicates the maximum extent to which
characters may be kerned with this track.

¢ MinKern (SIGNED SHORT). This is a signed integer
value which indicates the minimum extent to which
characters may be kerned with this track.

Figure 6-10 illustrates the Track Kern Structure. The result
of the track kern algorithm, described under the section
about kerning, is added to the escapement value of each
character in the string being kerned. Positive values in-
crease the spacing and negative decrease it.

Auto Font Support 6-33

6-34 AutoFont Support

(
Tightest
Track
Data
\
4
Next
Tightest
Track
Data
\

[eNeNe

Number of Tracks
in List

Track Value

Max Point Size
for Track
Max Point Size
for Track

Max Kern Value

Min Kern Value

Track Value

Max Point Size
for Track
Max Point Size
for Track

Max Kern Value

Min Kern Value

Figure 6-10. Track Kern Information

Device Data

» Typeface Selection String (Level 1)
Tag = 442 (1BAh)

Type = ASCII
Length = # of bytes in the ASCII string plus one null
byte.

This tag defines the value needed to select the correct type-
face from a PCL printer. The string matches identically
what must be sent to a PCL printer in the escape sequence
?(s#T. NOTE: Some of the values may be two-byte values.
The Laserdet IID, ITP , and later printers all support a two-
byte value for typeface selection. A LaserdJet series II and
previous printers only recognize a one-byte value, which is
the lower byte of the two byte value (modulo 256).

Auto Font Support 6-35

PANOSE Numbers « PANOSE Numbers (Level 3)
Tag = 443 (1BBh)

Type = Byte
Length = 10

This tag contains the ten-byte PANOSE Classification num-
ber which is used to describe the visual characteristics of a
given typeface. These characteristics are used to associate a
typeface with other similar typefaces that have different
names. The names for these ten bytes are given below. De-
tailed specifications for these bytes can be obtained in the
PANOSE Classification Guide from Elseware Corporation
(206-632-3300).

Type Name
BYTE bFamilyType;
BYTE bSerifStyle;
BYTE bWeight;

BYTE bProportion;
BYTE bContrast;
BYTE bStrokeVariation;
BYTE bArmStyle;
BYTE bLetterform;
BYTE bMidline;

BYTE bXHeight;

6-36 AutoFont Support

“Glue” File
Description
and Usage

File Format

A file called GLUE.TXT is used to form the link between
the printer font and its associated TFM file. The “glue” file
is an ASCII based file, consisting of lines up to 80 charac-
ters in length. Each line is terminated by a CR/LF pair
(value ODh, 0Ah (13, 10)).

This file should be located in the \AUTOFONT directory.

In general, data begins in the first byte of the line. The fol-
lowing types of lines are recognized:

» “”(Blank lines). Blank lines are ignored.

o “”(Comments). A semi-colon in any position on a line
indicates the rest of the line is a comment.

o “[]” (Category headings). Category headings represent
general information about the type of printer and type of
printer files. The following categories are used:

[Cartridge] - Cartridge fonts
[PCL fonts] - PCL soft fonts

[Printer] - Internal printer fonts

e “{})” (Sub-category headings). Sub-category headings
provide information about the class of printer files being
used. The following sub-categories are used:

Printer Class

Description

LaserdJet bitmap fonts

DeskdJet fonts

Compressed Bitmap fonts

PaintJet XL fonts

Dot matrix printer fonts

Reserved

PCL Encapsulated Outline scalable fonts

T/O|mMmmMm|O|O || >

PostScript fonts

Auto Font Support 6-37

Font Entries

6-38 AutoFont Support

o “KXXXXX =" (Parameters). Parameters begin with a
keyword (case insensitive), followed by a space, equal
sign, space, and data. The data consists of one or more
ASCII strings. The items are separated by at least one
blank and may be scanned in with the C “scanf”
command. Each parameter is followed by
sub-parameters and ends with the next parameter,
category, sub-category, or end of file. The following
parameter is used:

FONT = typeface family name

* “/yyyy =” (Sub-parameters). Each sub-parameter begins
with a slash (/) followed by the keyword, space, equal
sign, space, and data. The data consists of one or more
ASCII strings, separated by at least one blank. All
sub-parameters are part of the parameter they are under
until a new parameter is entered.

Each font is represented by an entry in the appropriate sub-
category. The entry consists of one parameter and a collec-
tion of sub-parameters, each on its own line.

The font entry commences with a “FONT” parameter. All fol-
lowing sub-parameters are considered part of the FONT en-
try, until the next parameter is reached, or the end of the
sub-category, category, or file is reached.

The following are the parameters and sub-parameters
found in the font entry. The first parameter, FONT, is re-
quired for each entry. The other sub-parameters may or
may not be present (Required sub-parameters will vary by
font class).

* FONT - Will be followed by “ = ” and the typeface family
name.

+ /family - The typeface family number.

Typeface Family Value
SANS SERF ROUND 0000-0039
SANS SERF EVEN PROP 0040-0399
SANS SERF OLD STYLE 0400-0645
SANS SERF DECO 0646-0799
MOD SANS/FLARE SERF 0800-1029
RND/TRIANGLE BRACKT 1030-1099
BRKT SERF OLD STYLE 1100-1145
BRACKET OLD SPARE 1146-1395
BRACKT SERF EVN PROP 1396-1449
BRACKET SERF EVN SPARE 1450-1705
BRACKET SERIF MODERN 1706-1827
SERF MODRN, DECO SPARE 1828-1995
BRACKET SERIF DECO 1996-1999
LINE SERIF 2000-2149
SQUARE SERIF 2150-2299
NON-CONN SCRIPT 2300-2353
CONN SCRIPT 2354-2409
CALLIG SCRIPT 2410-2429
BROKEN LETTER SCRIPT 2430-2459

Auto Font Support 6-39

» /resource - Indicates the format or location of the font.
The first entry after the “ =" is a single character:

D = downloadable soft font
I = internal font (resident in printer)
C = cartridge

Other data may follow on the same line. For fonts of type D,
the next string on the same line is the number of bytes of
printer memory required by the font. Cartridge fonts have a
unique cartridge identifier as the next string of data fol-
lowed by a string containing the cartridge name. The
following table contains the cartridge identification num-
bers. Internal fonts have a printer name as the next string

of data.
Cartridge ID Number Cartridge
1 A
2 B
3 D
4 E
5 C
6 L
7 F
8 H
9 G
10 N
11 M
12 Q
13 P
14 J
15 U
16 V
17 W
18 Y

6-40 AutoFont Support

Cartridge ID Number

Cartridge

19 X
20 R
23 Z
24 K
25 W1
26-28 Pro Collection
240 Tax
1200 S1
1201 S2
1202-1203 Polished Worksheets
1204-1205 Persuasive Presentations
1206-1207 Word Perfect
1208 Math Scientific
1209-1210 Forms
1211 Bar codes
1212-1213 Global Text
1214 Great Start
1215 International Collection
1300 Distinctive Documents I/
Compelling Publications |
1301 Brilliant Presentations |/
Compelling Publications I
1302 WordPerfect

scalable cartridge

Auto Font Support 6-41

6-42 AutoFont Support

+ /font file - This sub-parameter always appears for
downloadable soft fonts. It contains the path and
filename of the corresponding soft font.

» /symset - Symbol set. The first item is a PCL symbol set
selection string code which indicates the mapping of the
font. The second item is a number representing the
classification of the symbol set. NOTE: This entry can
occur multiple times within the entry. This allows an
entry to represent a collection of identical fonts except
that each uses a different symbol set.

PCL Symbol Set Value
Selection String Code

LATIN_TEXT_SET 1
INTL_TEXT_SET 2
PROPER_QUOTE_SET 4
DOUBLE_QUOTE_SET 8
MATH_SET 16
LEGAL_SET 32
LINE_SET 64
PC_LINE_SET 128
P1_SET 256
DINGBATS_SET 512
OCR_SET 1024
BARCODE_SET 2048
SPECIAL_SET 4096
TAXLINE_SET 8192

Each symbol set is broken up into a subset of the set
of items listed above. For example, take a classifica-
tion number “9”, represented in the /symset sub-pa-

rameter of the “glue” file. The 9 breaks up into 8 + 1
(always break the number up into numbers of base 2

origin). The 8 represents the DOUBLE QUOTE SET
and the number 1 represents the LATIN TEXT SET.
Therefore, the symbol set being represented is a dou-
ble quote and Latin text symbol set. Another example:
the classification number is 4101 = 4096 + 4 + 1
which means a special, proper-quote, Latin text sym-
bol set is being used by the font.

/orient - Orientation of the font. One or more of the
strings “P” = portrait, “L.” = landscape, “RP” = reverse
portrait, and “RL” = reverse landscape will be included.
For downloadable outlines, this subparameter is
irrelevant.

/ptsize - Point size of the font, not the size of the point as
is in the point tag (tag 406). This sub-parameter is not
used if the font is scalable. NOTE: If the entry is
representing a collection of identical fonts except in
different point sizes, this sub-parameter would contain
the different point sizes, with a space dividing each. For
example, if the entry is to represent CG Times in 8 and
10 point, the sub-parameter would be “/ptsize = 8 10”.

/tfm - The path and filename of the TFM metrics file
which pertains to the font referenced by the FONT
parameter.

/weight - Stroke weight, 0-255, as in TFM file. If this
sub-parameter is not present, the typeface is assumed to
be medium weight.

/slant - If the value is 0 or not present, the font is
upright. If the value is positive, the font is italic. If the
value is negative, the font is left italic.

/typeface - The full typeface name up to 50 characters.

/type file - The path and filename of the typeface data
source file. This sub-parameter is used by applications
with font scaling capabilities. The data source file is only
useful if the file located at this sub-parameter location is
compatible with the font scaling method. For example,

if this sub-parameter points to a .TYP file then
applications with the Intellifont font scaling method

can use this file to create screen fonts or printer fonts.

Auto Font Support 6-43

NOTE: For all scalable font entries, this sub-parameter
is provided. For non-scalable font entries, this
sub-parameter is provided if the data source file is
known.

» /class - Font class. This is usually unnecessary, because
soft fonts are grouped in sub-categories by class.
However, it may be used in other categories or
sub-categories, such as for resident printer fonts or

cartridge fonts.
Font Class Description
A Laserdet bitmap fonts
B DeskdJet fonts
C Compressed Bitmap fonts
D PaintJet XL fonts
E Dot matrix printer fonts
O PCL Encapsulated Outline scalable fonts
P PostScript fonts

6-44 AutoFont Support

The following listing shows a sample glue file:

[PCL Fonts]

{A} ;LaserJet bitmap fonts

FONT = CG Palacio

[family = 1142

/resource = D 6588

/weight = 179

/slant =1

[font file = c:\TD2\FONTS\PAJOGUSA.SFP
/symset=0U 5

/orient =P

Iptsize = 4.00

ltype file = c\TD2\TYPE\92535.TYP

/ttm = CVAUTOFONT\PAJOOOOS.TFM
{O} ;PCL Encapsulated Outline scalable fonts
FONT = Antique Olv

[family = 430

/resource = D 24082

/font file = CATD2\FONTS\ANROOUSO.SFS
/symset=0U 5

ltype file = CATD2\TYPE\91119.TYP

/ttm = CVAUTOFONT\ANROOOOS.TFM
[Cartridge]

{1208 Text Equations}

FONT = CG Times

/class = A; LaserJet bitmap fonts

/family = 1100

/resource = C 1208 Text Equations
/symset = OA 16

/symset = 8M 18

/symset = 15U 256

/symset = 8u 5

/orient =P

Iptsize =8 10

/ttm = CVAUTOFONT\TRROOOOS.TFM
FONT = Prestige

[/class = A; LaserJet bitmap fonts

/family = 3001

/resource = C 1208 Text Equations

Auto Font Support 6-45

6-46 AutoFont Support

/symset = 8M 18

/orient =P

Iptsize = 7.00

/ttm = C\ AUTOFONT\PRROSMS8A.TFM
{1300 Distinctive Doc | Compelling Publ I}
FONT = Stymie

/class = O; PCL Encapsulated Outline scalable fonts
[family = 2172

/weight = 179

/resource = C 1300 Distinctive Doc | Compelling Publ |
/symset=7J5

/symset = ON 9

/symset = 1U 33

/symset = 8M 18

ltype file = CATD2\TYPE\900067.TYP
/ttim = C:\ AUTOFONT\SYSBOOOOS.TFM
[Printer]

{LaserJet lII}

FONT = CG Times

/class = O; PCL Encapsulated Outline scalable fonts
/family = 1100

/resource = | LaserJet llI

/symset=9U 9

/symset =14J 5

/symset = 6M 16

ltype file = C:\TD2\TYPE\92500.TYP

/ttm = CVAUTOFONT\TRROOOOS.TFM
FONT = Line Printer

/class = A; LaserJet bitmap fonts

[family = 2969

/resource = | LaserJet IlI

/symset=0ON 9

forient =L

Iptsize = 8.50

/tim = C\AUTOFONT\LPROYE1A.TFM

Supported Fonts

HP font products can be categorized as either bitmapped or
scalable. The term bitmapped describes the way the font in-
formation is stored in a file. A bitmapped font has a fixed
size that is represented in a file as a pattern of dots describ-
ing its shape. Scalable fonts are stored as “outlines” and are
not limited to a specific size. The Intellifont® and TrueType
scaling algorithms resident in the LaserdJet 4 printer (Intel-
lifont is resident in the other PCL 5 printers) scales the font
outlines to create fonts of different sizes.

HP supplies font metric data via TFM files for all current
font products:

+ TFM files are supplied to the end user with the purchase
of any HP font product, requiring software to provide
dynamic font support for immediate compatibility.

* Font metric files for the Laserdet 4 printer internal fonts
are supplied on disk and should either be hard-coded into
the application driver or loaded with the software
installation and read dynamically.

» All font products are shipped with the AutoFont Support
Installer that easily copies the TFM files to the
appropriate location on the hard disk.

Auto Font Support 6-47

TFEM File Distribution

Note l'ﬂ

6-48 AutoFont Support

The following lists differentiate between those font products
that are shipped with TFM files and those products that are
not.

Font Products Shipped to Users with TFM Files Provided:
Bitmapped Fonts

* The MasterType Library of Font Cartridges—including
the ProCollection cartridge, Global Text, TextEquations,
Bar Codes & More, Forms Etc., Persuasive
Presentations, Polished Worksheets, the Microsoft
Cartridge, and the WordPerfect cartridge.

Scalable Typefaces

» All scalable typefaces—includes Type Director typeface
products such as Benguiat, CG Times etc.

» All scalable cartridge typefaces.

Other Fonts (TFM Files Supplied to Software Developers):
Bitmapped Fonts

e Internal bitmapped fonts—printer-resident fonts.

e Font cartridge products such as the HP 92286A, B, C, ...
Z,S1, and S2.

Scalable Typefaces

e Scalable internal typefaces—scalable typefaces resident
within the PCL 5 LaserdJet printers.

The TFM files for all PCL 5 Laserdet printer internal type-
faces and bitmapped fonts are supplied on disk, since they do
not ship with the printers. To support these fonts, the applica-
tion can load these TFM files into the AUTOFONT directory
as part of the software installation process; the TFM data can
then be read dynamically using the same procedure as with
all the other fonts. (The Type Director 2.x program can also
create TFM files for Intellifont scalable typefaces and for PCL
bitmapped soft fonts.)

Comparing Past
Font Support With
TFM Support

Before the introduction of the LaserdJet III printer, HP pro-
vided software developers with sample font products and
with a means of incorporating spacing tables within printer
drivers. Each time a new font was introduced, rewriting or
creating a new printer driver was required in order to sup-
port the new font. Figure 6-11 describes the font support
process prior to TFM files.

]]
Spacing
I:I Font — O — Width =—p O
n Tables
Cartridge HP-Supplied Hard-coded in
Font Disk Software Driver

:l J Spacing I:I
— O — Width ==p O

n Tables
O FontLoad Hard-coded in
Software Driver
Soft Font

v

0
2
4 Software
6
I—» . O

Font Header Dynamic
Soft Font

Support

Figure 6-11. Font Metrics Before AutoFont Support

Auto Font Support 6-49

Note l'ﬂ

The Benefits of
Supporting TFM Files

6-50 AutoFont Support

For those developers using the font header for obtaining
font metrics, the header for bitmapped fonts has been modi-
fied to contain more information. Although the header is
backward-compatible, software developers that currently
use the font header for obtaining font information should
take note of the changes. Support for TFM files eliminates
the need to read font headers, but those needing informa-
tion about the new font header can find it in the PCL 5
Printer Language Technical Reference Manual.

Dynamic TFM support has several benefits:

» A standard method for access to font metrics

* A one-time resource and code investment

» Frees font driver writers to perform other tasks
» Saves code space needed for font driver updates
» Eliminates font driver distribution issues

* Ensures that the user has immediate and efficient use of
font products with software, creating a higher level of
customer satisfaction

* Provides automatic support of fonts from sources other
than HP, if the source supplies TFM files

[

Type B
D'regt?)rz Tagged [n
I . Font Scalable Typefaces
(Creates ot
TFM e_ ric
File _
when o s [
Typefaces »| (_Uhpp
are with Font Font Cartridge Bitmaps
Installed) Purchase
to End-
e e |

Scalable Typeface

\4 Cartridges

Software

O

Software
Support for
Fonts

Figure 6-12. Font Metrics With TFM Support

Auto Font Support 6-51

AutoFont Support

Hard-coding
TFM Data

Note l'ﬂ

6-52 AutoFont Support

HP recognizes that full integration of the AutoFont Support
program requires a commitment from the software devel-
oper, and that it may take a while to take full advantage of
it. Because of the commitment involved, and the fact that
each software product has a different development sched-
ule, there are two levels of TFM integration:

» Hard-coding TFM data
* TFM Reader integration

The process of hard-coding TFM data is very similar to the
font support process for LaserdJet printers introduced before
the Laserdet III. If you wish to hard-code font metric data
into an application, HP has provided a TFM Reader utility
on disk. The TFM Reader includes a program module to
print TFM data to the printer, the display screen, or to an
ASCII file. Use the TFM Reader as stand-alone executable
code to extract the TFM data, and then use the ASCII file
containing the data in the same way that font spacing
tables are used.

Font metric information for scalable fonts can be hard-
coded into an application, but the information is provided in
Design Units at one given size, and must still be scaled
appropriately.

For example, to support the ITC Bookman Light Italic font,
you would use the TFM Reader to obtain TFM data and
then format the resulting font metric information to include
in your ITC Bookman driver. Once the font metric data is in-
corporated into your driver, your application can access the
data when it begins to format pages for printing and then
adjust the data depending on the desired point size.

TFM Reader
Integration

Note l'ﬂ

HP discourages hard-coding font metric data as a method of
support, since font metric information is not distributed to
software vendors prior to introduction of new font products
(TFM files are supplied to end-users with their font product
purchase). Since font metrics are different for every point
size, for bitmapped fonts it is necessary to incorporate the
data for every point size you wish to support with your
application.

To the user, this level of font support means that new font
products won’t operate with application software without
font-specific drivers; hard-coding font metric data is recom-
mended only as a short-term solution until a driver is writ-
ten to dynamically read TFM files. (For more information
on hard-coding TFM data, refer to the TFM Reader Integra-
tion portion of this chapter.)

In contrast to hard-coding metric data, writing a driver that
can read TFM data eliminates the need to write another
driver for each new font product you wish to support. Sup-
porting TFM files allows you to write one driver that can
handle any of HP’s font products.

Integrating a TFM reader routine enables a software devel-
oper to easily support non-scalable bitmapped fonts as well
as scalable fonts, since HP provides TFM files with all cur-

rent font products.

Software developers need not interface with Type Director
for font metrics (as was done by some developers in the
past); Type Director 2.x creates TFM files for all disk-based
scalable typefaces used with PCL 4 and PCL 5 devices.
Type Director creates one TFM file per scalable typeface;
the font metrics in that TFM file are linearly scalable as ap-
propriate for other point sizes. (In Type Director 2.5, TFM
file creation is optional.)

Auto Font Support 6-53

6-54 AutoFont Support

Following are two scenarios that describes how a customer
uses an application with an integrated TFM reader. The
first scenario is for cartridge-based fonts; the second is for
scalable disk-based fonts.

CARTRIDGE-BASED FONTS

The user installs the TFM files for the new cartridge using
HP’s AutoFont Support Installer supplied with the car-
tridge. During the font installation, the TFM files are
loaded into the \AUTOFONT directory. When the user
specifies that cartridge for printing, the software accesses
the \AUTOFONT directory for the appropriate TFM infor-
mation.

SCALABLE DISK-BASED FONTS

For disk-based fonts, the user also uses the supplied HP
AutoFont Support Installer. As with the cartridge fonts, the
TFM files for the typefaces are loaded into the \AUTO-
FONT directory. The user selects a symbol set using the
AutoFont Support Installer, and the installer creates a scal-
able font that is stored in the \TD\FONTS directory. The
application software, knowing where the font files are
stored, lists the fonts that are available to the user. The
user then chooses fonts from the available selection. To for-
mat the document for printing, the application uses the dy-
namically-read TFM data. When ready to print, the
application downloads the scalable fonts, allowing the
printer to scale them to the requested size.

To help developers that are integrating TFM reading capa-
bility into their software, HP provides a TFM Reader rou-
tine on one of the disks supplied with this manual, and an
example program that shows how to read a TFM file. Refer
to the TFM Reader portion of this chapter for information
on the available tools and how to use them.

Adding TFM reading capability to your software requires
the incorporation of a TFM reader routine—either a custom-
ized TFM reader or one similar to the TFM Reader that is
supplied on disk with this manual. As its name implies, the

Available Tools for
TFM Reader
Integration

TFM Reader reads font data from that font’s associated
TFM file and then formats the data as a data structure that
can be read by your application.

The TFM Reader is intended to be an integral part of your
software application. To implement TFM Reader Integra-
tion, the TFM Reader is called from your software applica-
tion as font metric information is required. The section
below describes how to incorporate the TFM Reader into
your application.

The tools available to implement TFM Reader integration
are as follows:

TFM Reader Source and Executable Code

HP has included the TFM Reader source code (READER.C)
and executable code on a disk that is supplied with this
manual. Integration of READER.EXE is the heart of dy-
namic TFM support. (The TFM Reader may also be modi-
fied or used as an example for code that you write.)

TFM Files

With this manual, HP has supplied the needed TFM files to
support the internal LaserdJet printer fonts.

Example Implementation

All source code for the TFM Reader and the example
implementation are included on one of the disks supplied
with this manual. Software developers may use or modify
the source code for specific use with their software packages.

Auto Font Support 6-55

The TFM Reader
Program

6-56 AutoFont Support

Although most applications use metric information for de-
termining letter spacing, each developer has their own way
of coding the data into their drivers. As a sample program,
the TFM Reader serves as a model for extracting metrics in-
formation from a TFM file. This program is written in the C
programming language and provides two functions:

e Itreads a TFM file and creates a TFM data structure
containing font metric information.

+ It can print font metric information from the data
structure to an ASCII file, printer, or display screen.

The TFM Reader creates a data structure, which is stored
in RAM and contains the metrics information read from all
the tags in the TFM file. After creating the data structure,
the TFM Reader returns the address of that structure to
the application program. The TFM Reader may be modified
to access only some tags, reducing the size of the resultant
data structure (and increasing performance).

The TFM Reader has a program module that takes the in-
formation from the TFM data structure and prints it to an
ASCII file. The ASCII file is created only as a means of
viewing the contents of the TFM file. The TFM Reader
should be incorporated as part of the application and used
to transfer the desired data into an application-specific met-
rics file (unless the developer uses the TFM file directly).
The TFM Reader is basically a function within the
application program.

End-User
Considerations

Software
Application
Metrics Request A Font Meti
(TFM File Name) § ont Metrics
TFM
Reader
1 Metrics
Information
TFM
File

Figure 6-13. The TFM Reader Interface

With the integration of the TFM reading capability, HP’s
AutoFont Support Installer allows end-users to install all
TFM files into the \AUTOFONT directory, on the volume
of their choice (the HP-recommended default is C:\AUTO-
FONT). This eliminates the need for the customer to store a
TFM file in multiple directories if more than one applica-
tion is used.

Some applications could use the TFM file as a temporary
file which is only used to build an application-specific met-
ric file. Even in this situation, the TFM files should be
stored on the hard disk so that other applications have
access to the files.

Auto Font Support 6-57

TFM File
Loops Until All Tags
are Read.
Simultaneously 1
Writes TFM Data Reads Metric
Structure. Information From the
TFM TFM File. Places the
Reader Metrics Information into
a TFM Data Structure.
TFM Sample Application-
Data Structure Specific Metrics File
Data Structure ASCII Data File Printed
Accessed by Software by the TFM Reader.
Application Used as Example of
Accessing TFM Data
Structure

Figure 6-14. The TFM Reader

Using the TFM The calling program must provide the TFM Reader with
Reader the path name and file name of the TFM file to be read.

When the TFM Reader has read the file, it passes the ad-
dress of the TFM data structure it has created to the calling
program. The TFM data structure it creates is stored in
RAM and contains metric information extracted from the
TFM file. The size of the data structure is proportional to
the size of the TFM file.

6-58 AutoFont Support

TFM Reader
Data Flow

The TFM Reader program should be called from within
your application’s interface module; it is used as follows
(C programming language):

T = TFMREAD(infile);

TFMREAD This function calls the reader routine.
The reader routine returns a pointer to
the TFM data structure if correctly exe-
cuted or exits to DOS with an error
code if it fails.

T This value is returned from the reader
routine (TFMREAD) as a pointer to
the TFM structure which was created
by TFMREAD. An example declara-
tion is:

Struct TFMType «T;

infile This parameter passes to the reader
routine (TFMREAD) the pathname
and filename of the TFM file to be
read. An example declaration is:

Char infile[] = “filename”

Following is a description of how the data flows from the ap-
plication through the TFM Reader and finally to the TFM
data structure which is accessed by the application.

1) The application makes a request for metric information
by supplying the path name of the desired TFM file to
the TFM Reader.

2) The TFM Reader first retrieves the required header infor-
mation from the TFM file.

3) The TFM Reader then retrieves the requested tags from
the TFM file. The tags are ordered in the file by their re-
spective tag number. The TFM Reader reads the tags se-

Auto Font Support 6-59

6-60 AutoFont Support

quentially starting with the first tag. S

ome tags may con-

tain more data than is stored in the data section of the
tag header. In this case, an offset is placed in this loca-
tion to tell the TFM Reader where to access the tag infor-
mation. The TFM Reader then interprets the information

and retrieves the data.

Software
Application

Pointer to Reader | 4

h I Pointer to TFM Structure

v | Pointer to TFM structure

Read TFM File

Request I A A I Request

v | Header Info Tag Info | v
Read TFM File
Header Read TFM Tag

Request ‘ 1

Read Offset of
“Overflow” Tag
Information

A

Application-
Specific
Metrics File

Offset Information

The application sends the TFM path and file name to the TFM
Reader. The TFM Reader reads the file and passes the address
of the data structure back to the application. The application then
creates a metric file in the format it recognizes.

Figure 6-15. TFM Reader Data Flow Diagram

4) The TFM data structure is created at the same time the

TFM file is being read.

Modifying the
TFM Reader

5) The TFM Reader returns the address of the TFM struc-
ture to the software application.

6) The application uses the TFM data structure to create an
application-specific metric file in the format needed for
the application. (This strategy is sufficient until the TFM
file becomes the font metric standard; it is preferred, how-
ever, that the TFM file itself take the place of the applica-
tion-specific structure.)

The TFM Reader code (READER.EXE), located on one of
the supplied PCL 5 Developer’s Guide disks, accesses all
tags in the TFM file and creates a TFM data structure
which includes information from all tags. You may modify
the TFM Reader to access only specified tags, with the re-
sulting output being a much smaller TFM data structure.

To modify the TFM Reader to read only certain tags, delete
the unused case statement. Refer to the TFM Reader source
code (READER.C) on one of the HP-supplied disks (in-
cluded as part of this manual). For example, to prevent the
TFM Reader from reading the copyright tag, delete the
lines beginning with case tagCOPYRIGHT: through break.
To prevent the TFM Reader from reading the strokeweight
tag, delete the lines beginning with case tagSTROKEWT:
and ending with break.

All program lines from the appropriate case statement (de-
pending on the tag to be skipped) through the break must
be deleted. The default case is used to compensate when
there is no case statement for a particular tag. It causes an
advance to the next tag in the TFM file without reading the
information contained in that tag.

Auto Font Support 6-61

Accessing the TFM A basic map of the TFM data structure created by the TFM
Data Structure Reader program is shown in table 6-1. Within the main
data structure is the typeface sub-structure, since there
may be more than one typeface in a TFM file (although
with HP TFM files, this won’t be the case). The typeface sub-
structure contains five sub-structures which are general,
typefaceMetrics, symbol, characterMetrics, and kerning.

Table 6-1. The TFM Data Structure

Contains general information about the TFM file, such as processor family, version of the
TFM file, and number of typefaces contained in the file.

Contains general information about a particular type-
face, such as typeface name, source, copyright, number
typeface general of characters in the typeface, and number of pre-defined
symbol sets available.

Contains font metrics about a particular typeface such
as point size, stroke weight, cap height, ascent, and de-

typefaceMetrics
P scent.

Specifies the mapping of symbols
in the font file and mapping to

symbolMa
4 P HP’s MSL and the Unicode list.

symbol Sub-structure contains symbol
set name, selection string, and
symbolSetDirectory | mapping index for each pre-
defined symbol set.

Contains metrics information
such as horizontal escapement,
vertical escapement, left extent,

characterMetrics character ;

and right extent for each charac-
ter in the typeface.

kernpairs Contains kern pair information.
Contains sector kerning informa-

. sectorKernChar tion.
kerning

Contains track kerning informa-

trackKern tion.

6-62 AutoFont Support

Example:
Accessing the TFM
Data Structure

Following are some examples that demonstrate accessing
information from the TFM data structure.

Each field in the TFM data structure is explained in detail in
the “TFM File Structure” section which appears earlier in this
chapter. Data types for the TFM Data Structure are as follows:

char BYTE [* 8-bit (1 byte) character */
int WORD /* 16-bit (2 bytes) integer */
long LONG [* 32-bit (4 bytes) integer */
double RATIONAL /* 64-bit (8 bytes) floating point */

Once the TFM data structure has been created, font metric
data is accessed by giving the complete name of the request-
ed information. The following examples demonstrate how to ac-
cess the TFM data structure.

The following five examples demonstrate how to access data
from the data structure created by the TFM Reader:

1) This example accesses the version number of the TFM
file by using the following pointers:

TFM pointer -> version

2) This example accesses the typeface name of the font from
the TFM file by using the following pointers:

TFM pointer -> typeface -> general.typeface

3) In this example, the recommended line spacing for the
font is accessed by using the following pointers:

TFM pointer -> typeface ->
typefaceMetrics.recommendedLineSpacing

4) The symbollndex for a given pre-defined symbol set is ac-
cessed by using the following pointers, where X is the
symbol set index and y is the index number of the charac-
ter index:

TFM pointer -> typeface ->
symbol.symbolSetDirectory [x] -> symbolindex [y]

Auto Font Support 6-63

Example:

Using TFM Values
in Intellifont
Calculations

6-64 AutoFont Support

5) This example demonstrates how to access the width of
each character for a given pre-defined symbol set by find-
ing the symbol index as shown in the previous example,
and then using the following pointer to access horizontal
escapement (x is the character index number):

TFM pointer -> typeface ->
characterMeterics.character[x] -> horizontalEscapement

Once TFM data is retrieved from the TFM data structure,
the data is frequently used in calculations. For instance, to
determine the number of characters in a line of text, the
sum of the horizontal escapement values of each character
in the line must be subtracted from the desired text width.
The following example demonstrates using TFM data to cal-
culate the width of a character.

This example converts the width of a 20-point numeral “2”,
which has a horizontal escapement of 4391 Design Units, to
PCL Units of Measure. The first example uses 300 PCL
Units per inch and the second example uses 600 PCL Units
per inch.

The font metric units for scalable fonts are always given in
Design Units. Convert Design Units to PCL Units using the
following equation:

x =round(b * ¢ * (d/e) * (uom))
where:
x = desired metric value in units of measure
b = inches per point
¢ = point size of font
d = metric value in Design Units
e = number of Design Units in the design EM

uom = PCL Units of Measure

Note l'ﬂ

Device dots determine the resolution to which the character
is rendered. The PCL Units of Measure setting determines
the accuracy of the placement of the character.

For LaserdJet 4 printers, the Unit of Measure command
defines how a “dot move” is interpreted. Font metrics
should be calculated based on the current PCL Unit of
Measure size. The default Unit of Measure is 300 PCL
Units per inch. For more information, see the “Units of
Movement” discussion in Chapter 4, or refer to the PCL 5
Printer Language Technical Reference Manual.

Intellifont Method (20 point at 300 PCL Units per inch)
Assume the following values:
b =1 inch/72.307 points (Tag 406)
¢ = 20 points
d = 4391 Design Units (Tag 433)
e = 8782 Design Units (Tag 408)
uom = 300 PCL Units of Measure

Using the above values:
X =round(1/72.307 = 20 * 4391/8782 * 300)
=round(41.489)
=41 PCL Units of Measure

Intellifont Method (20 point at 600 PCL Units per inch)
Assume the following values:
b =1inch/72.307 points (Tag 406)
¢ =20 points
d =4391 Design Units (Tag 433)
e = 8782 Design Units (Tag 408)
ppi = 600 PCL Units of Measure

Auto Font Support 6-65

Supplied TFM Files

6-66 AutoFont Support

Using the above values:

x = round(1/72.307 * 20 = 4391/8782 * 600)
round(82.979)
83 PCL Units of Measure

Tagged Font Metric Files have been included in the \TFMS
directory on one of the supplied PCL 5 Developer’s Guide
disks. TFM files for on-board printer fonts are not supplied
to the end user; instead, they are supplied to you. Software
developers should either copy the supplied internal-font
TFM information to the AUTOFONT directory during their
installation procedure or hard code this information in a ba-
sic internal font driver for the PCL 5 printers (a “base”
driver).

There is one TFM file per scalable typeface. That TFM file
has indices for all pre-defined symbol sets. Note that TFM
files for scalable fonts are not dependent on symbol set or
orientation. TFM files for bitmapped fonts are bound by
symbol set and orientation.

Some of the TFM files located on the supplied disk are for
the LaserdJet printer’s internal bitmapped fonts, and the
remaining files are for the scalable fonts internal to the
PCL 5 printers.

File Naming
Convention

Using the former TFM file naming convention, there was no
way to uniquely identify very similar typefaces or

versions of typefaces based solely on the TFM filename.
Therefore, Hewlett-Packard is using a new file naming
convention. Since there are not enough filename characters
available to correctly identify a typeface, the new conven-
tion will not attempt to relate font information to the file-
name in any way. For accessory type with AutoFont
installation programs, information about the font should

be obtained from the TFM file itself or from the glue file.

Former filename convention

New filename convention

ttrxxssa.tfm

tt: typeface family designator

vvv: HP-assigned vendor

ID number (base-36)
: random number

tfm: filename extension

r: treatment designator
XX: point size

ss: symbol set

a: format designator
tfm: filename extension

There is no need to change older, existing TFM filenames
unless there is a specific problem with TFM filenames over-
writing each other. The new convention should be applied to
all new TFM files created.

In current TFM releases, Hewlett-Packard is using the new
filename convention, using the characters “ONB” for the
“vvv” field. The characters “ONB” are followed by a 5-digit
random number, and a “ TFM” extension.

Auto Font Support 6-67

Sample TFM
Implementation

6-68 AutoFont Support

The file “AG.C” is the source code for an “ASCII Generator”
program that accesses all fields in the TFM Data Structure
and prints the information in ASCII format either to a file,
to the display screen, or to a printer. The source code for
AG.C is located on one of the supplied disks. The executable
code is part of READER.EXE (the TFM Reader executable
code).

As mentioned, the ASCII Generator is a part of the TFM
Reader, and is called by the TFM Reader. It can also be
accessed from the command line. To create an ASCII file
from the TFM data structure, run the supplied
READER.EXE file by typing READER at the DOS prompt.
The TFM Reader shell will prompt you for the name of the
TFM file to be read. Enter the TFM file name. Once the
TFM Reader has read the TFM file and created the RAM-
resident TFM data structure, the TFM Reader prompts for
the location to send the output ASCII file. The selections
are as follows:

S — tothe SCREEN
P — tothe PRINTER
F — toaFILE

Q — toQuUIT

If “Q” is selected, the TFM Reader program is exited and
the TFM data structure is no longer accessible.

Software developers may use a program similar to the
ASCII Generator to access the TFM data structure and
then create an application-specific metrics file. The ASCII
Generator contains functions which read the sub-structures
within the main TFM Data Structure. For more informa-
tion, see the Accessing the TFM Data Structure discussion
earlier in this chapter.

Note l'ﬂ

Following is a list of the ASCII Generator’s functions:

printTFMType

This function reads the TFM “type” information from the
TFM structure, formats the information, and prints it to an
ASCII file. (Refer to the AG.C code on the supplied disks.)
The function is called only once for each TFM file. The
printTFMType function reads the following data from the
TFM header and directory:

* Processor Family
» Version Number
* Number of Typefaces

A TFM file may include information about several type-
faces. This is not likely, but if there is more than one type-
face, the “Number of Typefaces” field indicates a number
greater than 1. If this happens, the TFM Reader reads the
entire typeface before continuing to the next typeface.

printGenerallnfo

This function reads the “general typeface” information from
the TFM data structure, formats it, and writes it to a file in
ASCII format. (Refer to the AG.C code on the supplied
disks.) This function is called as many times as there are
typefaces in the TFM file. The printGenerallnfo function
reads the following information from the general sub-struc-
ture of the TFM data structure:

e TFM Type (Tag 400)

e Unique Association ID (Tag 405)

e Typeface Name (Tag 417)

e Typeface Source (Tag 418)

e Copyright (Tag 401)

e Comment (Tag 402)

e Typeface Selection String (Tag 442)

Auto Font Support 6-69

6-70 AutoFont Support

* Number of Characters (refer to Tag 403)
* Number of Symbol Sets (refer to Tag 404)
 PANOSE Numbers (Tag 443)

printTypefaceMetrics

This function reads the typeface metrics information from
the TFM structure, formats it, and writes it to a file in
ASCII format. (Refer to the AG.C source code on the sup-
plied disks.) This function is called as many times as there
are typefaces in the TFM file. The printTypefaceMetrics
function reads the following information from the typeface-
Metrics sub-structure of the TFM data structure:

* Point Size in Inches (Tag 406)
* Nominal Point Size (Tag 407)
* Design Units (Tag 408)

» Stroke Weight (Tag 411)

» Appearance Width (Tag 414)

e Serif Style (Tag 415)

e Type Structure (Tag 410)

e Spacing (Tag 412)

» Slant (Tag 413)

e Average Width (Tag 419)

e Maximum Width (Tag 420)

e Inter-word Spacing (Tag 421)
* Recommended Line Spacing (Tag 422)
e Capheight (Tag 423)

* Xheight (Tag 424)

» Ascent (Tag 425)

e Descent (Tag 426)

» Lower Case Ascent (Tag 427)

» Lower Case Descent (Tag 428)

* Underscore Descent (Tag 429)

» Underscore Thickness (Tag 430)

» Uppercase Accent Height (Tag 431)
» Lowercase Accent Height (Tag 432)

printSymbolMSLInfo

This function finds the total number of symbols in the type-
face and maps each symbol to HP’s Master Symbol List.
The function then formats the information and writes it to
an output file in ASCII format. This function is called as
many times as there are symbols in the typeface. (Refer to
the AG.C code on the supplied disks.)

printSymbolMSLInfo reads the following information from
the symbol sub-structure of the TFM data structure:
* Symbol Map (Tag 403)

printSymSetinfo

This function reads the symbol set information from the
TFM structure, formats it, and writes the information to an
ASCII file. The function is called as many times as there
are symbol sets in the typeface. (Refer to the AG.C source
code which is located on the supplied disks.) The following
information is accessed from the symbolsetDirectory sub-
structure of the TFM data structure.

» Symbol Set Name (refer to Tag 404)

e Symbol Set Selection String (refer to Tag 404)
e Symbol Set Index Array (refer to Tag 404)

e Array Length (refer to Tag 404)

printCharacterMetrics

This function reads the character metrics information from
the TFM data structure, formats the information, and
writes it to an output file in ASCII format. This function is
called as many times as there are characters in the type-

Auto Font Support 6-71

face. (Refer to the AG.C code on the supplied disks.) The
printCharacterMetrics function reads the following informa-
tion from the characterMetrics sub-structure in the TFM
data structure:

» Horizontal Escapement (Tag 433)
» Vertical Escapement (Tag 434)

e Left Extent (Tag 435)

* Right Extent (Tag 436)

* Character Ascent (Tag 437)

» Character Descent (Tag 438)

printKerninglnfo

This function reads the kerning information from the TFM
data structure and writes it to the ASCII output file. This
function reads three types of kerning information: sector,
track, and kern pairs. The function is called as many times
as there are typefaces in the TFM file. (Refer to the AG.C
source code which is located on the supplied disks.)
printKerninglnfo reads the following information:

From the kerning sub-structure of the TFM data structure:
e Number of Kern Pairs (refer to Tag 439)

e Number of Sector Kern Characters (refer to Tag 440)

e Number of Sectors per Character (refer to Tag 440)

e Number of Tracks (refer to Tag 441)

From the kernPairs sub-structure (refer to Tag 439):

» First Character Index

* Second Character Index

» Kern Value

From the sectorKernChar sub-structure (refer to Tag 440):
* Character Index

» Left Side Sector Values

* Right Side Sector Values

6-72 AutoFont Support

Note l'ﬂ

From the trackKern sub-structure (refer to Tag 441):
» Track Value

* Maximum Point Size

e Minimum Point Size

* Maximum Kern Value

¢ Minimum Kern Value

The ASCII Generator only prints tags that have been read
by READER.EXE. It is not necessary to modify the ASCII
Generator if the TFM Reader is modified to access only cer-
tain tags.

Selecting Fonts
Using TFM
Information

Adding the TFM Reader, or a modified version of the
reader, allows you to use font metric information for more
than just character spacing. A very good use of TFM data is
for obtaining the proper PCL selection command for a par-
ticular font.

To select a printer font, seven parameters are used:

* Symbol Set

* Spacing

» Pitch

* Height (Point Size)

o Style

» Stroke Weight

o Typeface

The values for these seven parameters may be read from a
TFM file as described in the following paragraphs. The val-
ues obtained from the TFM files may then be used in the
font select command to select that particular font.

Auto Font Support 6-73

Note l'ﬂ

Symbol Set

Spacing

6-74 AutoFont Support

Pitch

When selecting fonts for the LaserdJet series II printer, the ori-
entation of the font must also be specified, because the font
must be available in the orientation you wish to print. (The
Laserdet 2000, IID, ITP and all PCL 5 Laserdet printers auto-
matically rotate fonts to match the current orientation.)

The value needed to select a given symbol set is provided by
the symbol set selection string, located in the font’s TFM
file. The byte offset to the selection string is located in the
5th through 8th bytes of Tag 404 (symbol set directory). The
symbol set selection string is used in the symbol set com-
mand, Ec(ID.

The spacing value for font selection is obtained from Tag
412 (spacing). A value of zero indicates that the font is pro-
portional. Any other value indicates that the font is fixed-
spaced. The application must translate any non-zero Tag
value to 1 for proportional spacing, Ec(s1P, and use a value
of 0 for fixed spacing, Ec(sOP.

The value needed to select the correct font pitch is also pro-
vided using Tag 412 (spacing). If the value read is zero, the
font is proportional. If the Tag value is any other number,
the value given is the pitch of the font in Design Units.

For example, the spacing value of 600 Design Units is given
in the TFM file for a Courier 12-point, 10 cpi bitmapped
font. Given that the font was designed using 72 points per
inch, and the number of Design Units in the design EM is
1000, the following equation can be used:

(1 in./72 points) * 12 points * (600 du/1000 du) = 0.1 inches

The pitch was calculated to be 0.1 inch/character, and the
inverse is 10 characters/inch. Ten is the value that would be
sent to the LaserdJet printer in the command Ec(s#H. To con-
vert the pitch to dots, the following equation can be used:

(0.1 inch) * (300 dots/inch) = 30 dots

Height (Point Size) The command value needed to select the correct point size
is provided by Tag 407 (nominal point size). If the font is a
bitmapped font, the value read is the value to be sent to the
printer in the height command Ec(s#V. For scalable fonts,
the point size is input by the user and then sent to the
printer using the same command. In this case, the printer
uses the height value as an operator to indicate the desired
point size for scaling the font.

Style The style value is obtained using the Tag values read from
three different tags: Tag 413 (Slant), Tag 414 (Appearance
width), and Tag 410 (Type structure). The PCL values for
these three tags are combined into a style word as follows:

Bits O - 1: Posture (slant)
Bits 2 - 4: Width

Bits 5 - 9: Type Structure
Bits 10 - 15: Reserved

Note M All LaserdJet printers look for an exact match for style, al-
J though only the 0 and 1 values were defined for the Laser-
Jet series II, IID, IIP, and earlier printers.

Auto Font Support 6-75

Posture

To obtain the correct posture value, the value is read from
Tag 413 (slant). If the value read is other than zero the font
is italic and the value indicates the degree of slant. Valid
values for the PCL Posture (bits 0 and 1 of the style byte)
are as follows:

PCL Value Posture
0 Upright
1 Italic
2 Alternate Italic
3 Reserved

Width

The width value is read from Tag 414 (appearance width).
The valid range for TFM values and corresponding PCL val-
ues is shown in the following table.

Width Tag Value PCL Value*
Ultra-Compressed 0-20 4
Extra-Compressed 21-47 3
Extra-Condensed 48-74 2
Condensed 75-101 1
Semi-Condensed 102-128 0
Normal 129-155 0
Semi-Expanded 156-182 0
Expanded 183-209 6
Extra-Expanded 210-236 7
Ultra-Expanded 237-255 7

* Multiply PCL Value by 4 for Style Word Partial Sum

6-76 AutoFont Support

Structure

To obtain the correct value for structure, read the value of
Tag 410. The TFM values and their corresponding PCL val-
ues are indicated in the following table.

Structure Tag Value PCL Value*

Solid 0-7 0
Outline 8-15 1
Inline 16-23 2
Contour 24-31 3
Solid with Open Shadow 32-39 4
Open with Solid Shadow 40-47 5
Inline with Shadow 48-55 6
Contour with Shadow 56-63 7
Pattern 1** 64-71 8
Pattern 2** 72-79 9
Pattern 3** 80-87 10
Pattern 4** 88-95 11
Pattern 1 with Shadow™** 96-103 12
Pattern 2 with Shadow™** 104-111 13
Pattern 3 with Shadow™* 112-119 14
Pattern 4 with Shadow™** 120-127 15
Inverse** 128-135 16
Inverse w/ Open Border** 136-143 17
Reserved** 144-255 18-31

* Multiply PCL Value by 32 for Style Word Partial Sum

**These values are not supported on the Laserdet series II, IID, and ITP

printers.

To derive a parameter value for the style command, the Tag
values for posture, width, and structure are converted to

Auto Font Support 6-77

Stroke Weight

6-78 AutoFont Support

PCL values using the tables above. Then the PCL values
are added to get the style command value: Ec(s#S.

The example below shows how the desired style command
parameter value is obtained from a sample font:

Assume that the Tag values are as follows: Posture value
(Tag 413) = 1; appearance width (Tag 414) = 75; structure
value (Tag 410) = 32.

* A posture value of 1 (italic) equals a PCL value of 1.

* An appearance width of 75 (condensed) equates to a PCL
value of 4 (1 x4 =4).

* A structure value of 8 (outline) equates to a PCL value of
32 (1x32=232).

Totaling the PCL values gives a parameter value of 37 =
(1 + 4 + 32 = 37). Therefore, the correct style command for
selecting this font is Ec(s37S.

The correct stroke weight parameter value is provided by
Tag 411 (stroke weight). The Tag values and their corre-
sponding PCL values are listed in the following table:

Stroke Weight Tag Value PCL Value
Ultra-Thin 0-17 -7
Extra-Thin 18-34 -6
Thin 35-51 -5
Extra-Light 52-68 -4
Light 69-85 -3
Demi-Light 86-102 -2
Semi-Light 103-119 -1
Medium 120-136 0
Semi-Bold 137-153 1
Demi-Bold 154-170 2
Bold 171-187 3

Typeface

Note l'ﬂ

Stroke Weight Tag Value PCL Value
Extra-Bold 188-204 4
Black 205-221 5
Extra-Black 222-238 6
Ultra-Black 239-255 7

The PCL Value is the value used in the stroke weight com-
mand. For example, if the value of Tag 411 is 137 (semi-
bold), the corresponding PCL value is 1 and the resulting
stroke weight command is Ec(s1B.

Tag 442 provides the font’s typeface value. The Tag value is
the value that is used in the typeface command, Ec(s#T, to
select that font.

Some typeface values are two-byte values. The LaserJet
IID, ITIP, and PCL 5 printers all support two-byte typeface
selection parameters. The LaserdJet series IT and previous
printers only recognize a one-byte value, which is the lower
byte of the two-byte value (modulo 256).

Locating the
TFM Files

Hewlett-Packard recommends that all TFM files be placed
in the \AUTOFONT directory of the root directory. HP’s
AutoFont Support Installer is used as the mechanism for
copying TFM files onto the hard disk. Using the utility, the
user is able to select the volume, but not the directory,
where the TFM files will be located.

Auto Font Support 6-79

HARD DISK
AUTOFONT SUPPORT \AUTOFONT
> Directory:
INSTALLER TFM Files &
GLUE.TXT

f

Application
accesses TFM
files when
needed

y
y

TFM Files

SOFTWARE APPLICATION

Figure 6-16. Locating the TFM Files

The Glue File When the AutoFont Support Installer loads the TFM files
onto the hard disk, an ASCII file named GLUE.TXT is cre-
ated and is placed in the same directory as the TFM files
(AAUTOFONT). This file serves as a link between the font
file and its associated TFM file. The GLUE.TXT file is a
tool that software developers can use to get font informa-
tion that is not obtainable from the font metric files, namely:

* The volume/directory location of the TFM files
* The location of the font file associated with the TFM files

* Whether the TFM file represents information about a
downloadable soft font, internal printer font, or a
cartridge font.

e The symbol set associated with the font

Note % Detailed information about the GLUE.TXT file is described
earlier in this chapter.

6-80 AutoFont Support

Creating TFM Files
from Intellifont Files
or PCL Bitmaps

Note l'ﬂ

Note l'ﬂ

This section is for font vendors wishing to create TFM files
for their fonts. It discusses the following items:

» Tools available to create TFM files

» How to use the TFM Writer

» How data flows through the TFM Writer

» The errors that can be returned by the TFM Writer
* How to modify the TFM Writer

» How to access the TFM Writer data structures

The TFM Writer was created by Hewlett-Packard to create
TFM files from Agfa FAIS files, Agfa Library files, or PCL
bitmaps with either short (26 bytes) or long (64 bytes) PCL
font headers. Most recently, the ability to create a TFM file
from a TrueType typeface file has been added.

Chapter 8 discusses TFM Writer support for TrueType files.

This writer is composed of four programs: one for Agfa FAIS
files, one for Agfa Library files, one for PCL bitmapped files,
and one for TrueType files. Each program is compiled from
the same source code, but with the use of Microsoft C
#IFDEF statements, different parts of the source code can
be included or excluded. To protect the compatibility of all
TFM files, font vendors may not modify the TFM Writer to
produce new tags. However, portions of this code may be
modified to create TFM files from other source metric or
font files. Refer to the “Modifying the TFM Writer” discus-
sion for information on how to modify the TFM Writer to
read different input metric files.

When referring to the TFM Writer throughout this section,
the reference is actually to the four different programs asso-
ciated with the TFM Writer.

Auto Font Support 6-81

Available Tools

The TEM Writer

6-82 AutoFont Support

The tools available to implement TFM Writer are as
follows:

o TFM Writer Source and Executable Code

TEFM Writer source and executable code has been included
in the WRITER subdirectory on one of the disks supplied
with this manual.

+ TFM Specifications

The Tagged Font Metric Specifications found earlier in this
chapter provide definitions of each TFM tag.

Using the TFM Writer

The TFM Writer, provided on disk, is invoked by spawning
from an interface program, INTRFACE.EXE. This interface
program prompts the user for all needed information to cre-
ate a TFM file from a PCL bitmapped font file, a FAIS font
file, a Library font file, or a TrueType file. The interface pro-
gram provides the TFM Writer with the following informa-
tion through an ASCII file named PARAMET.ERS.

When you run the TFM Writer program you will be asked
the following questions. Each question corresponds to a line
entry in the file PARAMET.ERS:

1. The type of file being used.

The TFM Writer knows of four different files it can read:
FAIS, Library, PCL bitmaps, or TrueType files. In this lo-
cation, place an “f” for FAIS files, “1” for Library files, “b”
for PCL bitmap files, or “n” for bitmap files with subfile
type = 1 (Tag 400).

2. The file name of the source file which the TFM Writer will
read to obtain metric information.

3. The file name of a second file (only if needed).

For example, FAIS files contain two files associated with
each typeface, the attribute file and the descriptor file.
The attribute file (an odd numbered file such as
F0001.FF) would be listed in step #2 of this list and the
descriptor file (an even numbered file such as FO002.FF)

would be listed in step #3 of this list. If a second file is
not used, place a “-1” in this location.

. The path of the files to be read.

5. The path of the *.SYM files.

The *.SYM files are ASCII files which contain the different
symbol sets to be placed in the TFM file. Each contains
general information about the symbol set (that is, the

PCL selection string, symbol set name, etc.) and a list
containing the decimal value and corresponding Agfa CG
character number of a character.

. The path and file name of the kern pair list.

The HP version of TFM Writer uses the ASCII file TD.KRN
which contains a list of over 1000 pairs of different char-
acter combinations. The format of this file contains the

1st Agfa CG character number and the 2nd Agfa CG
character number separated by a space. Each entry is on

a separate line.

. The path and file name of the CG to MSL conversion list.

The HP version of the TFM Writer reads FAIS and Library
files that contain Agfa CG numbers for the character
numbers. The file, CG-MSL.EXH, contains a list of Agfa
CG numbers and equivalent MSL numbers. This list is
then used to convert the CG character numbers in the
metric files to their equivalent MSL numbers. The for-
mat of this file contains the CG character number and
the corresponding MSL character number, separated by
a space. Each entry is on a separate line. Font vendors
should replace this list with one that converts their char-
acter numbers to the equivalent Master Symbol List
numbers.

. The path and file name of the limited sensitivity and uni-
versal character metrics file.

Auto Font Support 6-83

HP uses a file (PLUGIN.TYQ) which contains characters
common to all typefaces or groups of typefaces. This file
is used to append those common characters to the list
specific for the typeface. If this file is not needed, place a
“-1” in this location.

9. The path and file name of the temporary ASCII TFM file.

A temporary ASCII file is used to initially generate the vari-
ous tags. When all tags have been developed, the WT-
TFM.EXM module is called which reads this temporary

file and converts it to binary. The default path and file
name used is TEMP\RESULTS.TAG

10.The destination path of the new TFM file.

After the interface program has spawned to the correct pro-
gram of the TFM Writer (FAIS.EXM—executable pro-
gram for reading FAIS files, LIBRARY.EXM—executable
program for reading Library files, and BITMAP.EXM—
executable program for reading Bitmap files), the TFM
Writer reads the parameters listed above via the PARA-
MET.ERS file. Using the parameters, TFM Writer finds
as much information about the typeface as possible.
With this information, tags are developed and placed in
the temporary ASCII file. After all tags applicable for
the typeface have been produced, a new TFM file name
is placed at the end of the file. Control is then given back
to the interface program. The interface program spawns
to WI-TFM.EXM. This program first reads the PARA-
MET.ERS file to find the temporary ASCII file name and
destination path. It then reads the last line of the tempo-
rary ASCII file for the new TFM file name. Using this
new path and file name, WI-TFM.EXM converts the tem-
porary file from ASCII to binary, placing the information
in the order specified by the Tagged Font Metric specifi-
cations (outlined earlier in this chapter).

6-84 AutoFont Support

Data Flow

The following process describes how metric information

is placed in the TFM file with the TFM Writer and
WT-TFM.EXM. Figure 6-17 describes how data flows
through the TFM Writer from a source metric file contain-
ing information about the typeface to the binary TFM file
which is used by the software developer.

Internal Process for Creating a TFM File:
1. The File Reader is entered.

2. The File Reader places the CG-MSL conversion list into a
global data structure. This structure is used frequently
throughout the TFM generation process to convert a
character number to its equivalent MSL number. Font
vendors should supply a conversion list similar in format
to the CG-MSL.EXH file to convert character numbers
to Master Symbol List numbers.

3a.The File Reader retrieves the typeface metrics from the
file(s) requested through the PARAMET.ERS file. If font
vendors want to read metric files in a format other that

FAIS, Library, or PCL, the File Reader should be modi-
fied to include new code that reads the metric file.

3b.If the File Reader is retrieving metrics from a bitmap
font, the symbol set file ((SYM file) using the same sym-
bol set as the bitmap font is found. For example, if the
bitmapped symbol set is Roman-8, the .SYM file for Ro-
man-8 is found. General information about the symbol
set is taken from the .SYM file and used later when de-
veloping the Symbol Set Directory tag.

4. The File Reader adds universal and limited sensitivity
characters to the already accumulated list of characters.
These characters are only added if they are required for
a given typeface product, like an FAIS or Library file.

5. Once all possible information has been obtained, control is
given to the Tag Developer which develops the tags and
places them in the temporary ASCII file. For developing
the Symbol Set Directory tag for scalable typefaces, all

Auto Font Support 6-85

Note l'ﬂ

6-86 AutoFont Support

.SYM files in the directory specified in the PARA-
MET.ERS file are used. Information is taken from these
files and placed in the Symbol Set Directory tag. For de-
veloping the Pair Kern tag, the kern pair list (TD.KRN)
is used. It contains a list of all the pairs to be placed in
the Pair Kern tag.

6. After all possible tags have been developed, the Tag Devel-
oper returns control to the interface program. The inter-
face program then spawns to the ASCII to Binary
Converter, WI-TFM.EXM.

7. WI-TFM.EXM converts the tags in the temporary ASCII
file to binary and places them in the new binary TFM
file. The name of this file is read from the last line of the
temporary ASCII file.

8. WT-TFM.EXM returns control to the interface program
and the TFM generation process is done.

When control is returned to the interface program, a status
number is passed back. If the status number is zero, no er-
rors occurred and the process is successful. If the status
number is not zero, an error occurred and a TFM file was
not successfully created. The textual representation of the
error number is found in TFM.ERR.

If font vendors wish to modify the TFM Writer to read other
source metric files, the File Reader portion of the TFM
Writer is the only portion that should be modified. All other
portions of the TFM Writer should NOT be modified, to en-
sure consistency for all TFM files. Refer to the following
“Modifying the TFM Writer” section for details on how to
modify the writer for different metric files or on how to get
new tags placed into the TFM file.

Symbol
Files

FAIS, Library,

or Bitmap Files

Limited

Information

about symbol set
and common
characters between
symbol set and map.

Set

Information

about symbol set
and common
characters between
symbol set and map.

CG-MSL
Conversion List

Sensitivity and
Universal
Character List
Data from
Specified
Files
CG Numbers
and Equivalent
File MSL Numbers
Header <
Typeface Metrics
A 4
List of Kern
Pairs
Tag M
Developer
Tags in ASCII Form
Temporary
ASCII File

Typeface Metrics from Temporary File

ASCIl to Binary

Converter

Binary
TFM File

Tags in Binary Form

Kemn Pair
List

Figure 6-17. TFM Writer General Data Flow Diagram

Auto Font Support 6-87

PANOSE Numbers

Modifying the
TFEM Writer

6-88 AutoFont Support

PANOSE numbers (Tag 443) may be built into an Intellifont
TFM file with the Library file option of the TFM Writer.
The following procedure should be followed:

1. Create an ASCII file called “PANOSE.IF” and place it in
the same directory as LIBRARY.EXM. Each line in the
PANOSE.IF file contains a typeface number followed by
10 PANOSE numbers, separated by spaces. The file for-
mat is shown below.

2. Create a TFM file using the Library option. The TFM
Writer will check for the presence of the PANOSE.IF file.
If it finds the file, it will check for the typeface number

and associated PANOSE information. If the information
is found, Tag 443 will be built into the TFM file.

PANOSE.IF
91118 2 n1mn 8 3 2 2 4 3 2 4
90270 2 4 6 4 4 5 5 2 2 4
90249 3 3 5 2 4 4 6 7 6 5

The TFM Writer reads from an Agfa FAIS file, Agfa Library
file, PCL bitmap file, or TrueType file. It creates all level 1
tags, plus level 2 and level 3 tags that are applicable for a
given typeface.

Modifying the File Reader Portion of the TFM Writer

Modifying the file reader portion of the TFM Writer to read
different source metric formats is relatively easy. First, gen-
erate code to read the new input file format. Second, place
the appropriate data into the appropriate set of data struc-
tures provided in the “Accessing the TFM Writer Data
Structures” section that follows this. The actual structures
are located in header files, TFMFAIS.H, TFMLIBR.H, and
TFMBITM.H, which are on the supplied disks. For exam-
ple, if this new file reader reads scalable files, place the
data into either the FAIS or Library data structures. If the
file reader reads non-scalable files, place the data into the
bitmapped data structures.

When choosing the most suitable data structures, note that
some structures are used interactively with different files.
For example, the copyright data structure is used by the file
reader when reading FAIS, Library, or bitmapped files. This
feature is not common for all of the data structures. Some
structures are specifically for only one type of file. The ta-
bles in the “Accessing the TFM Writer Data Structures” sec-
tion list the type of file(s) that each structure can be used
with.

Whenever a modified metric file reader is used, fill the exist-
ing data structures with the metric data from the new
source file. When the Tag Developer, module DEV1, is
called, a variable specifying the type of data structure is
sent with the metric information. Font vendors using a
modified metric file reader should specify in this variable
the type of existing data structure used, not the type of file
read. For example, if the bitmap data structures are filled
in, the variable sent to the DEV1 module should be a “b”. If
Library data structures are used, the variable sent to the
DEV1 module should be an “1”. If FAIS data structures are
used, the variable sent should be an “f”.

Note that the file type value specified in PARAMET.ERS is
used for determining what type of file the File Reader is
reading. This could be “f” for FAIS files, “b” for Bitmap files,
“1” for Library files, or some other letter for another font
vendor’s metric file. The value sent to the DEV1 module is
used to determine what type of data structures the Tag De-
veloper is using. This could be “f” for FAIS data structures,
“b” for Bitmap data structures, or “1” for Library data struc-
tures. Metric information from another font vendor’s metric
file should be placed in one of these data structures, and
the same variables should be used.

Adding New Tags to the TFM File

When software developers read TFM files from different
font vendors, they must be guaranteed all tag numbers are
consistent. They must also be guaranteed that certain tags
are always present. For example, character metrics should

Auto Font Support 6-89

Note l'ﬂ

6-90 AutoFont Support

always be present in a TFM file. Since every software devel-
oper requires different information about fonts, the font ven-
dor should provide at least all level 1 tags. (These tags are
defined earlier in this chapter.) To add tags or information
to a TFM file, the steps listed below should be followed:

Hewlett-Packard is responsible for adding any new tags to
the Tag Developer portion of the TFM Writer and updating
the TFM specifications outline in this chapter.

To add new tags to the TFM File:

1.

Request a new tag. To do this, contact your HP LaserdJet
printer support liaison.

Hewlett-Packard evaluates the request.

3. Ifthe requested information is not present in the existing

TFM file, Hewlett-Packard relays the request to other
software developers and font vendors.

If a favorable reply is received from other software devel-
opers and font vendors, the tag is placed into the TFM
specifications and included in the Tag Developer portion
of the TFM Writer.

This new TFM Writer and specification is distributed.
New TFM files can be produced with the new tag.

Note l'ﬂ

Accessing the TFM Writer Data Structures

The TFM Writer uses several different data structures.
They are composed of several main global variables used for
general typeface descriptions, data structures used for dif-
ferent types of kerning data, and a link list for character
metrics. Some, such as the link list, are common for all
types of files whether bitmapped or scalable, while others
are dependent on a specific type of file being read. These
structures reside in memory as pointers. If a structure is
needed, the structure must first be assigned memory for a
specific size, usually the size of the structure. After it is allo-
cated memory, it can be used.

Basic maps are provided below for the common data
structures used to place information into the tags. The
actual data structures used are located in TFMFAIS.H,
TFMLIBR.H, and TFMBITM.H. Examples on how to access

different structures are shown on the following pages.

In the data structures listed below, the (*) markers indicate
which tag is produced by that field. Those marked by a (**)
are used for other calculations. Those fields not marked are
not used.

Auto Font Support 6-91

The structures described below are used for reading the
font metric information from a bitmapped font file.

Bitmapped Font File Data Structures

*bitFontHeader thSize Font descriptor size (**)
fhBO Reserved
fhFontType Font type
fhwo Reserved
fhBaseline Baseline distance
thCellWidth Cell width
fhCellHeight Cell height
fhOrientation Orientation (**)
fhSpacing Spacing (¥412)
fhSymbolSet Symbol set (¥404)
thPitch Pitch (default HMI)

(¥412,419,421)
thHeight Height (*407)
thXHeight xHeight (¥424)
thWidthType Width type (*414)
thStyle Style (*413)
thStrokeWeight Stroke weight (¥*411)
thTypeFace Typeface (¥422)
fhSlant Slant
thSerifStyle Serif style (*415)

6-92 AutoFont Support

Bitmapped Font File Data Structures

*bitFontHeader thQuality Quality
fhwi Reserved
fhUnderlineDistance Underline distance (¥429)
fhUnderlineHeight Underline height (¥429,430)
fhTextHeight Text height
thTextWidth Text width
thFirstCode First code
thLastCode Last code
fhPitchExt Pitch extended (*412,419,421)
thHeightExt Height extended (*407)
fhw2 Reserved
fhFaceSource Typeface source
thHiFaceNumber Hi-byte typeface number
fhLoFaceNumber Lo-byte typeface number
fhFontName[17] Font name (¥417,418)
*charHeader ASCII_num Index number (¥¥)
chFormat Format
chContinuation Continuation
chSize Descriptor size
chClass Class
chOrientation Orientation
chBO Reserved
chLeftOffset Left offset (**)
chTopOffset Top offset (¥¥)
chCharWidth Character width (**)
chCharHeight Character height (**)
chDeltaX Delta x (*%*)

Auto Font Support 6-93

The structures described below are used for reading the
font metric information from either FAIS or Library files.

Common Data Structures for FAIS and Library Files

fontHeader_copyright[62]

Copyright (*401) (used for bitmaps
also)

fontHeader_fontDescription[100]

Font description (¥402)

fontHeader_timeStamp|6]

Time stamp (*405)

fontHeader NCHAR

Number of characters (*%*)

attrHeader_isFixedPitch Type of pitch (¥412)
attrHeader_scaleFactor Scale factor (¥408)
attrHeader_ascender Ascent (¥425)
attrHeader_descender Descent (¥426)
attrHeader_capHeight Cap height (*423)
attrHeader_xHeight Xheight (¥424)

attrHeader_lcAccentHeight

Lowercase accent ht. (*432)

attrHeader_ucAccentHeight

Uppercase accent ht. (*431)

attrHeader_uscoreDepth

Underscore depth (¥429)

attrHeader_uscoreThickness

Underscore thickness (*430,429)

attrHeader_spaceBand

Space width (¥412,419,421)

displayHeader_ NCHAR

Number of characters (¥440)

displayHeader_italicAngle

Italic angle (*413)

*typefaceHeader NFACES Number of typefaces
typeFaceName[50] Typeface name (¥402,417,418)
familyName[20] Family name
weight[20] Weight of typeface (¥411)

*identifier identifier Typeface number (¥442)

6-94 AutoFont Support

Common Data Structures for FAIS and Library Files

*descriptorSet stemStyle Style of the stem (¥415)
stemMod Mode of the stem (¥411)
stemWeight Weight of the stem (¥415)
slantStyle Description of slant style
horizStyle Description of horizontal style

(*414,415)
vertXHeight Description of vertical x Height
videoStyle Normal/Reverse characters
copyUsage Type of characters

hpfat NFATS Number of font alias tables (**)
aliasTableName[20] Font alias table name
NXREF Number of cross references
typefaceNumber Typeface number
PCLalfa[2] Typeface abbreviation (**)
treatment Typeface treatment
fixPitch Fixed/Proportional
PCLwidth PCL width (*414)
structure Structure of the typeface
face_width Appearance Width
posture Upright/Italic
stem_wt Stroke weight (¥411)
family TypeFamily code
serif_style Type of serif (¥*415)
serif_flag Serif/Non-Serif
compress Compressed/Non-Compressed
font_name[17] Font name (¥417,418)
FAIS_file_num Typeface number

Auto Font Support 6-95

The structure described below is used for reading the text
kern information from FAIS files.

FAIS File Text Kern Data Structures

*textKern kernSign Sector Kerning adjust to character
escapement (*440)

kernUnit Type of units (¥440)

NSECT Number of sectors (¥440)

*character left[8] Left side of character (¥440)

(for each character) right[8] Right side of character (¥440)

The structure described below is used for reading the text
kern information from a Library file.
Library File Text Kern Data Structure
*libTextKern kernSign Sector Kerning adjust to character
escapement (*440)
kernUnit Type of Units (¥440)
NSECT Number of sectors (¥440)
*character sector[4] | First 2 bytes represent left kerning data
(for each character) and last 2 bytes represent right kerning
data (*440)
The structure described below is used for reading the track
kern information from a FAIS file.
FAIS File Track Kern Data Structure
*trackKern NTRACK Number of tracks (¥441)

track[10] kernDegree Degree of tightness (¥441)

(for each track) minKernPtSize Minimum point size (10ths) (¥441)
maxKernPtSize Maximum point size (10ths) (¥441)
minKernAmt Minimum adjustment (¥441)
maxKernAmt Maximum adjustment (¥441)

6-96 AutoFont Support

The structure described below is used for reading the kern
pair information from a FAIS or Library file.

FAIS and Library Kern Pair Data Structure

*pairKern charl

character 1 (*439)

char2

character 2 (¥439)

value

kern amount in Design Units (¥*439)

The structure described below is used for accumulating
character metric information from a FAIS, Library, or Bit-
mapped font file. Each structure is a link for one character
with the list being all the characters.

Character Metrics Data Structure

*character_metrics cgNum Character number (*403)
cgKern 1=has kerning, 0=no kerning (*439,440)
cgKernIndex Index in kerning array (*439,440)
horizontalEsc Horizontal escapement (*419,430)
verticalEsc Vertical escapement (¥434)
rightExtent Right extent (¥420,436)
leftExtent Left extent (¥420,436)
ascent Ascent (¥423,425,427,437)
descent Descent (*426,428,438)
*next Pointer to next link (**)

The structure described below is used for converting CG
numbers to their equivalent MSL numbers.

CG to MSL Conversion Data Structure

*cgmsl CG

CG number

MSL

MSL number

Once one of these TFM data structures is used, metric infor-
mation is accessed by giving the complete name of the re-
quested information. The Tag Developer of the TFM Writer

Auto Font Support 6-97

Note l'ﬂ

6-98 AutoFont Support

automatically does this. Reference the TFM data structures
(header files) earlier in this chapter when using the follow-
ing examples. These examples demonstrate how to access
the structures to create tags.

Example: Accessing the Typeface Name

This example accesses the typeface name retrieved from a
FAIS file by using the following pointers:

typefaceHeader —> typeFaceName
or if a font alias table is present:

hpfat.font_name

Example: Accessing Horizontal Escapement Data

Access a character’s horizontal escapement retrieved from
any of the files by using the following steps:

1. Assign a temporary pointer (temp) to pointer charac-
ter_metrics (character_metrics always points to the first
link in the list).

temp = character_metrics

2. Using the temp —> cgNum variable, search through the
character_metric’s linked list for the link containing the
character in question.

for (; temp —> cgNum < character; temp=temp —> next);

By assigning temp=temp —> next, you will be able to parse
through the linked list, one line at a time.

3. When the character is found, the variable for finding the
horizontal escapement is temp —> horizontalEsc.

horizontal escapement = temp —> horizontalEsc

Example: CG to MSL Conversion

Access the 100th CG number and its MSL equivalent in the
CG-MSL conversion list by using the following pointer:

CG number = cgmsl|[100].CG
Equivalent MSL number = cgmsI[100].MSL

Example: Accessing Copyright Information

Access the copyright statement retrieved from either a
FAIS or Library file by using the following pointer:

fontHeader_copyright

Auto Font Support 6-99

Compiling the The following source code (.C) files and header (.H) files
TEM Writer create the TFM Writer executables on the supplied disks:

TFMWRITE.C

File format reader source code

DEVELOP.C

Tag Developer source code

WILTFM.C

ASCII to binary source code

IOBYTES.C

Input and output byte functions

TFMBITM.H

Bitmap file format structures

TFMDEF.H

Definitions

TFMERROR.H

Error conditions

TFMFAIS.H

FAIS file format structures (FAIS and
Library)

TFMLIBR.H

Library file format structures (Library
only)

TFMTAG.H

Tag structures

When referring to the TFM Writer, we refer to each pro-
gram that reads a different file format.

FAIS.EXM

Executable TFM Writer for reading FAIS
files

LIBRARY.EXM

Executable TFM Writer for reading
Library files

BITMAPEXM

Executable TFM Writer for reading
Bitmap files

The .EXM file is a .EXE file renamed with the new exten-
sion. These executable files are modules spawned by the in-
terface program, INTRFACE.EXM.

The source code, TFMWRITE.C, DEVELOP.C, and .H files,
are used to create the above .EXM files. To create each ex-
ecutable .EXM file, a #define variable is changed in
TFMDEF.H to represent a different format.

6-100 AutoFont Support

To create the executable files with the above files, follow the
steps below:

1.

Get into the TFMDEF.H file and go to line 14. Notice the
#define statement (two capital letters). Change these let-
ters to the correct type described in lines 8-10 (FS =
FAIS, LB = Library, BM = Bitmap). If the subfile type =
1 (Tag 400) for a bitmapped font, also define sym-
set_not_used by removing the comment markers. Then
save the file with the change, and return to the DOS
prompt.

Compiling the source code is relatively simple. The com-

piler used for the TFM Writer is Microsoft C, version 7.0.
Each executable module is compiled in Large Model for-

mat. To compile code, type:

cl /AL TFMWRITE.C DEVELOP.C

Typing the line above compiles and links the source code,
creating an executable file called TFMWRITE.EXE.

Once the executable file is generated, it should be re-
named to an .EXM file with the first eight characters be-
ing the name of the file format type to be read. For
example, if the source is compiled for FAIS files (#define
FS in TFMDEF.H), the executable file is named
FAIS.EXM. It is good practice to pack the executable to
save space. This and the renaming process described
above can be done by using Microsoft’s exepack function.
To use the exepack function, type the following:

exepack TFMWRITE.EXE (file format name).EXM
Repeat steps 1 to 3 for the different formats.

5. Each of the above .EXM files makes a temporary ASCII

file which contains the different tags developed. To
convert the ASCII file to the binary TFM file, the
WT-TFM.EXM executable module is used. Compiling
this module is relatively simple. Again, Microsoft C,
version 7.0 is used. To compile, type the following:

cl /AL WT-TFM.C IOBYTES.C

Auto Font Support 6-101

Note l'ﬂ

6-102 AutoFont Support

Typing the above line compiles and links the source code,
creating an executable file, WI-TFM.EXE. Note that the
same .H files are used in WIF'TFM.EXE as in
TFMWRITE.EXE.

6. Once the executable file is generated, it should be re-
named to an .EXM file. The same procedure is followed
as in step 3 except the new module is called WT-
TFM.EXM. To use the exepack function, type the follow-
ing:

exepack WT-TFM.EXE WT-TFM.EXM

Once all the steps are completed, the various modules used
to create TFM files have been generated. To use the mod-
ules, perform the following steps:

1. Create the PARAMET.ERS file.
2. Spawn to the correct file format .EXM module.
3. Spawn to the WI-TFM.EXM module.

All of these steps are performed automatically when using
the INTRFACE.EXE program on the disks provided with
this manual.

When the steps have been completed, a TFM binary file will
be located in the destination directory. Using the
READER.EXE program, you will be able to proof the data
in the file.

Intellifont ® Integration

Contents

Why Integrate Intellifont?. 7-1
Font File Formats 7-1
FileSizes i i 7-4
Adding Intellifont to Your Application Software. 7-5
Requirements for Adding Intellifont 7-5
AutoFont Support Installer. 7-6
Intellifont with AutoFont Support 7-7
Intellifont Without AutoFont Support 7-7
Resources for Adding Intellifont.............. 7-10
ScreenFonts............ 7-13
Internal LaserdJet Printer Fonts.............. 7-13
Bitmapped Font Cartridge Products 7-13

Scalable Typeface Products. 7-14

Why Integrate
Intellifont ® ?

Intellifont is a set of high-performance program routines de-
veloped by Agfa to quickly and accurately scale typefaces.
Intellifont is used to:

* Create screen fonts that exactly match printer fonts

» Allow users to use scalable type for those Laserdet
printers that do not include Intellifont in their firmware
(Laserdet series II, IIP, IID, 2000)

* Provide compatibility with other printers that accept
Intellifont-compatible typefaces

Intellifont is used to create screen fonts and matching
printer fonts that are compatible with PCL 4 and PCL 5
printers. Since the PCL 5 LaserdJet printers contain Intelli-
font in their firmware, software applications can download
scalable fonts and/or bitmap fonts to it. The Laserdet print-
ers using PCL 4 do not accept downloaded scalable fonts —
only bitmap fonts.

Intellifont is resident within HP’s Type Director utility, but
it is also available under license from Agfa for integration
within your software. Intellifont provides an excellent solu-
tion for matching screen and printer fonts and for scaling
fonts “on the fly” during the printing process.

The following discussion of file formats explains the process
of converting scalable typeface files to the file formats
needed by Intellifont and the PCL 5 LaserdJet printers.

Font File Formats

When an end-user purchases one of HP’s scalable typeface
products, the typeface files are in the Intellifont FAIS for-
mat. Intellifont FAIS is an acronym for the Font Access and
Interchange Standard file format developed by Agfa.
Intellifont FAIS files contain font data that describes the
contour (or “outline”) of each character in the font, along
with some metric data describing the typeface. The FAIS
files contain this contour data for every character in the

Intellifont Integration 7- 1

7- 2 Intellifont Integration

typeface complement, which is a superset of the various
Laserdet symbol sets (ASCII, Roman-8, etc.).

There are two FAIS files for every typeface on the media:

a Font Attribute file and a Font Display file. In order to be
used by Intellifont, the two FAIS files must be processed
through a Loader routine, which creates a file called a
Library file. (The Loader routine is part of Type Director
and also the AutoFont Support Installer [discussed later in
this chapter], or it can be integrated into your application.)

CG Times AutoFont \TD\TYPE
Typeface Disk Support Installer, Directory
Type Director,
FAIS File 1 or Application
(FO001.FF) \\
R Loader | Library File
rad "1(92500.TYP)
FAIS File 2 | L
(FO002.FF)

Figure 7-1. FAIS to Library File Conversion

The Loader converts the FAIS files to a Library file by gen-
erating a different header and stripping any unnecessary
data from the two files. The resulting Library file contains
the same character contour data as the FAIS data file it
was derived from, and it contains only the information that
Intellifont requires.

Note l'ﬂ

Creating
Downloadable
Fonts

The typefaces are shipped in the FAIS format for future
compatibility, allowing Intellifont to be further improved
while still being able to use the same typeface files. (Chang-
ing Intellifont requires only a Loader code change instead of
obsoleting the entire typeface library.) Another reason for
the FAIS format is to provide compatibility with Agfa image-
setters without the purchase of new typefaces.

Once the Library file is generated, Intellifont uses it as in-
put to create bitmap fonts for a printer or the display
screen. Although the PCL 5 Laserdet printers have Intelli-
font incorporated within their firmware, a Library file can-
not be downloaded directly to the printer. Before a scalable
font can be downloaded to a PCL 5 printer, it must have:

» PCL font and character descriptor information

» Symbol set information (if the scalable font will be bound
to a particular symbol set). If a symbol set is requested,
only characters for the requested symbol set are
downloaded.

Downloadable scalable fonts for the PCL 5 LaserdJet print-
ers are made using a program module called “Rambo”,
which extracts from a Library file the contour data for only
those characters in the requested symbol set, and encapsu-
lates the file with a PCL header. The resulting scalable font
file can then be downloaded to a PCL 5 Laserdet printer
and scaled to any size for printing (see Figure 7-2).

As mentioned earlier, to send the font to a PCL 4 LaserJet
printer, the Library file must first be scaled and converted
to a bitmap using Intellifont. A user can do this using either
the Type Director utility or using your application (with In-
tellifont integrated into it). From an end-user’s perspective,
incorporating Intellifont is the most desirable solution, al-
lowing WYSIWYG screen and printer fonts; your applica-
tion can use quality screen fonts and then scale matching
printer fonts as part of the print preparation process. The
user doesn’t have to use another external utility, such as
Type Director.

Intellifont Integration 7- 3

Building bitmapped fonts with Type Director requires that
the user either create the needed point sizes ahead of time,
or exit the application, load Type Director, and then create
them. Compared to an application incorporating Intellifont,
the Type Director solution is a separate process, uses more
disk space, and is less user-friendly.

AutoFont Support
Installer,
Type Director 2.x, Symbol Set
or Application Maps are only
necessary for
Symbol Set creating “bound”
Maps scalable fonts
(Roman-8)
v
i ; PCL-Formatted
Lib Fil
(glz‘r)rg(r)y_r;;) p Rambo »| Scalable Font
' (TRROORSS.SFS)
\TD\TYPE AutoFont Support
Directory Installer, {
Type Director 2.x,
or Application
PCL5
Printer

Figure 7-2. Library to PCL Format Conversion

File Sizes The list below contains approximate sizes for the different
types of files just discussed:

e Library files (~70 — 80 Kb [typeface-dependent])

» TFM files (~25 Kb for scalable typefaces; ~3 Kb for
bitmap fonts [these are symbol set dependent])

7- 4 Intellifont Integration

Bound scalable font files (typeface and symbol set
dependent: CG Times: ASCII [35 Kb]; Roman-8 [62 Kb];
PC-8 [83 Kb])

Unbound scalable font files (approximately three times
larger than bound fonts, depending on the number of
symbols—for Rambo, they are about three times larger)

Adding Intellifont to
Your Application
Software

Requirements for
Adding Intellifont

Integrating the Intellifont font scaling technology into your
software application allows you to create screen fonts to
match printer fonts for PCL 4 printers, PCL 5 printers, or
any other printer that accepts Intellifont fonts. Intellifont
font scaling capability adds value to your software, making
it easier for your customers to use fonts.

Incorporating Intellifont means that, besides adding the
Intellifont program code to your software, you will also need
access to these font file formats:

Library files for making screen bitmaps or printer
bitmaps (provided by the Loader program module)
Symbol set maps to make the scalable font files or
bitmaps (symbol set maps are provided with the
BUILDSYM utility and Type Director 2.x)

Scalable font files for downloading to the PCL 5 Laserdet
printers (Rambo creates these from Library files)

Scaled bitmap fonts for downloading to a LaserdJet series
IT or other PCL 4 printer (Intellifont creates these from
Library files)

TFM files for font metrics (these are AutoFont Support
files provided with every HP accessory font product)

Intellifont Integration 7- 5

AutoFont Support
Installer

Note l'ﬂ

7- 6 Intellifont Integration

One way to access all of these file formats is to incorporate
Intellifont and let HP’s AutoFont Support Installer provide
you with the other necessary resources. The AutoFont Sup-
port Installer utility ships with every HP font product sold.
For both bitmapped and scalable cartridge products, it
loads the TFM resources on the hard disk. For disk-based
scalable products, the AutoFont Support Installer loads the
TFM resources on the hard disk, creates Library files and
stores them on the hard disk, and creates scalable font files
for downloading to the PCL 5 LaserdJet printers. In essence,
the AutoFont Support Installer performs the functions of
the Loader and Rambo programs and also loads TFM files.

The AutoFont Support Installer differs from Type Director
in that it only installs and converts fonts; it does not scale
fonts as Type Director does. Both utilities use the same di-
rectory structure for storing files.

Another solution is to integrate all of the required program
modules into your application. This requires integrating
Intellifont, the Loader, Rambo, and symbol set files. The
table below briefly describes the two Intellifont integration
solutions. Both solutions are discussed later in more detail.

Solution 1: Integrating Intellifont Using HP’s Auto-
Font Support Installer:
 Integrate Intellifont code (25K)
» Rely on AutoFont Support Installer to load TFM files,
create Library files and scalable font files.

Solution 2: Integrating Intellifont Without Relying on
HP’s AutoFont Support Installer:

 Integrate Intellifont Code (25K)
 Integrate Loader (33Kb) for creating Library files
» Integrate Rambo (33Kb) for creating scalable fonts

» Integrate Symbol Set Maps (40Kb for all maps) for use
with Rambo (all symbol maps are required)

Integrating Intellifont
Using HP’s AutoFont
Support Installer

Integrating Intellifont
Without Relying on
HP’s AutoFont
Support Installer

As shown in Figure 7-3, HP’s AutoFont Support Installer

is used to create Library files, which are then scaled by
Intellifont and converted into bitmapped images compatible
with any printer that accepts Laserdet-format fonts. The Li-
brary files are also used to create screen fonts for the com-
puter display screen. Since the AutoFont Support Installer
is shipped with all HP font products, there is no need to in-
tegrate the Rambo program module or the Loader.

The benefits of relying on HP’s AutoFont Support Installer
are:

* You have less code to integrate into your software.

+ It provides a standard directory structure where various
types of files are always located.

» End-user font installation is more of a standard process,
eliminating the need for users to learn a new font
loading procedure for every software product.

The second scenario for incorporating Intellifont involves
adding the Loader and Rambo program modules to your

application, bypassing the use of HP’s AutoFont Support
Installer utility. This solution is illustrated in Figure 7-4.

As shown in the illustration, this solution involves incorpo-
rating the following tools:

* Intellifont code
* Loader program module
* Rambo program module

» Symbol set maps (for those symbol sets you want for
screen fonts and PCL 4-compatible fonts; these maps are
not necessary for PCL 5 Laserdet printer fonts)

The benefit of incorporating the Loader and Rambo into the
application is that you have a higher degree of control over
font operations. However, this solution requires more devel-
opment time and occupies more code space than using the
AutoFont Support Installer.

Intellifont Integration 7- 7

AUTOFONT SUPPORT INSTALLER HARD DISK
TFM Files > »| TFM Files \AUTOFONT) |
I L_| Library Files (\TD\TYPE) frm
FAIS Files | Loader »| Library File »| Rambo > Scalable Fonts
(3) (\TD\FONTS)
Download PCL 5 Printers
SOFTWARE APPLICATION -
@ Bitmap Tonty LaserJet sll/1IP/IID
> INTELLIFONT > :
@ Screen Fonts Display Screen

®

1) User uses Font Installer to load TFM files on hard disk (in \AUTO-
FONT directory).

2) Font Installer creates Library files and loads them on the
hard disk (in the \TD\TYPE directory).

3) User uses Font Installer to create scalable fonts for
PCL 5 printer (stored in \TD\FONTS directory).

4) Application uses Intellifont to generate downloadable bitmap fonts
from Library files (for LaserJet series Il, 11D, or IIP).

5) Application uses Intellifont to generate screen fonts from Library
files.

6) Application accesses TFM files for desired font data.

Figure 7- 3. Intellifont Integration Using AutoFont Support

7- 8 Intellifont Integration

@ SOFTWARE APPLICATION HARD DISK
TFM Files > »| TFM Files NAAUTOFONT) |
1 |—> Library Files \TD\TYPE) |
FAIS Files | Loader »| Library File »| Rambo > Scalable Fonts
@ (\TD\FONTS)
Download PCL 5 Printers

Bitmap Tonie LaserJet sll/lIIP/IID

@

o
Screen Fonts

©

Intellifont

Display Screen

(&)

1) User uses application software to load TFM files on hard disk (in
\AUTOFONT directory).*

2) Application creates Library files and loads them on the hard disk
(in the \TD\TYPE directory).*

3) User uses application software to create scalable fonts for
PCL 5 printer (stores them in \TD\FONTS directory).*

4) Application uses Library files and Intellifont to generate download-
able bitmap fonts (for LaserJet series Il, 1IP, or IID).

5) Using Library files and Intellifont, software application generates
screen fonts.
6) Application accesses TFM files for desired font data.

* Applications can use other directories, but it will result in
incompatibility with HP’s directory structure.

Figure 7- 4. Intellifont Integration w/o AutoFont Support

Intellifont Integration 7- 9

Resources for
Adding Intellifont

7- 10 Intellifont Integration

This section describes the tools just mentioned for integrat-
ing Intellifont into your application software.

AutoFont Support Installer

The AutoFont Support Installer is shipped with all HP font
products and performs several functions:

» It copies TFM files to the \AUTOFONT directory.

» It converts FAIS files to Library files and stores them on
disk in the \TD\TYPE directory.

» It converts Library Files to scalable font files in the
requested symbol set and stores them on disk in the
\TD\FONTS directory.

As previously mentioned, since the AutoFont Support
Installer performs the functions of the Loader and Rambo
code, developers have a choice of either letting end-users
use the AutoFont Support Installer for the necessary re-
sources or integrating the Loader and Rambo into their
application.

Intellifont

Intellifont is a font scaling subsystem capable of generating
high-quality character images in a variety of output and
graphic formats. The Intellifont subsystem is a group of call-
able routines implemented in the C programming language
to facilitate its portability. Its function is to provide defini-
tions of character forms and metrics in various formats to
support multiple technologies. A user of the sub-system
directs its operation by passing it a set of defined parame-
ters. The subsystem executes and provides the requested
character image and metric definition. The Intellifont sub-
system is not meant to be a free-standing program and does
not position or image characters. These functions are the
responsibility of the calling application.

The Intellifont subsystem that can be used for integrating
into application software is called Bullet, a small (~25 Kb)
and fast version of Intellifont. The Bullet product is avail-
able from and licensed by Agfa. For more information on in-

Note l'ﬂ

tegrating Intellifont, call Agfa at (508) 658-5600 and ask for
the OEM Technical Support Manager.

The Loader

The Loader program converts FAIS typeface files to a Li-
brary file. Refer to the beginning of this chapter for more
information about the FAIS to Library file conversion proc-
ess. The Loader is obtained from Agfa with the Intellifont
code and is approximately 33 Kb in size.

The Rambo Program Code

The Rambo program converts a Library file to a PCL scal-
able font file which may be downloaded to a PCL 5 device
(Laserdet III, ITID, IIIP, I1ISi, 4). The Rambo program and
source code are provided on disk by HP. The size of Rambo
is approximately 33 Kb, and is dependent on the compila-
tion method. Implementing the Rambo code is described in
detail in Integrating Rambo (Appendix C).

Symbol Set Files

HP supplies the symbol set files that Rambo uses (f
“bound” symbol sets are desired) to create scalable fonts us-
ing specified symbol sets. The symbol set files are included
with Rambo, Type Director 2.x, and the AutoFont Installer.
The symbol set files occupy approximately 40 Kb. Refer to
the Symbol Set Maps discussion (later in this chapter) for
more information on using the symbol set files. (The PCL 5
Printer Language Technical Reference Manual includes sym-
bol set maps for all Type Director symbol sets.)

The application downloader and screen font formatter are
provided by the software developer. The application down-
loader performs a binary file copy to download bitmap fonts
and scalable typefaces to the printer. The application screen
formatter formats screen fonts to meet the needs of the
application.

Intellifont Integration 7- 11

AutoFont
Support
Disk

Software
Application

Figure 7-5 illustrates how Intellifont can be integrated into
a software appplication. The shaded areas indicate the tools

provided by Hewlett-Packard and Agfa.

Tagged Font Scalable FAIS Scalable
Metric File Typeface Typeface
Disk
v
Loader
v
TFM Filel Library File
(on Hard Disk) (on Hard Disk)
| | L] | |
For PCL 5 For PCL 4 For Screen Fonts
A4 A4
Rambo Intellifont |
v v
f Font Bitmaps |
Symbol v L
y Set Lyl pcL Font Application
TFM Maps Formatter Screen
Reader v ¥ Formatter
L PCL
Application Scalable PCL Bitmapped *
Font : Font File Screen Fonts
Resource Font File

Figure 7- 5. Intellifont Integration

7- 12 Intellifont Integration

v

v

Application Downloader

¥

v

A\ 4

PCL 5 LaserJet
Printers

PCL 4 LaserJet
Printers

Screen
Display

Screen Fonts

Internal LaserJet
Printer Fonts

Note l'ﬂ

Bitmapped Font
Cartridge Products

For many software applications, it is highly desirable to use
screen fonts that match the printer fonts the user has se-
lected. As indicated previously, screen fonts can be made us-
ing Intellifont (if it has been integrated into the
application), using Type Director 2.x, or using Intellifont for
Windows. The available screen fonts for HP font products
are as follows:

HP’s Type Director 2.x utility creates discrete sizes of
screen font bitmaps in Microsoft Windows (FON) format,
and in Xerox Ventura Publisher format. Software develop-
ers can make their own screen fonts in discrete sizes using
Type Director 2.x; the utility ships with 4 treatments each
of the CG Times and Univers typefaces. These screen fonts
may be hard-coded into the LaserdJet printer driver. If Intel-
lifont is integrated into the software, Library files can be
converted to screen fonts without the use of Type Director.

The use of the Type Director screen fonts requires that the
software developer sign a license agreement with Agfa (free
of charge).

Matching screen fonts are not supplied for bitmapped font
cartridge products. When using HP cartridge products, soft-
ware may simulate actual printer fonts by substituting CG
Times screen fonts for all serifed fonts and Univers screen
fonts for all sans-serif cartridge fonts. For example, for a
Triumvirate font cartridge, the software could use the Uni-
vers screen font while using the Triumvirate font metrics
(supplied to the end-user on the AutoFont Support disk in-
cluded with their font purchase). Since Univers and Trium-
virate are both sans serif fonts, the end user would see a
screen font that approximates the design of the printer font.

Intellifont Integration 7- 13

Scalable Typeface
Products

Note l'ﬂ

7- 14 Intellifont Integration

Matching screen fonts for disk-based scalable typeface prod-
ucts are obtained using Intellifont (for those applications
that have integrated it), through the use of the Type Direc-
tor program, or through Intellifont for Windows. Type Direc-
tor outputs screen font bitmaps in the Windows (FON) and
Ventura formats in discrete point sizes as specified by the
end-user. For scalable cartridge products, the disk-based
typefaces are also shipped in the same package to allow ac-
cess to screen fonts in the same manner.

For more screen font information and for free licensing
rights for screen fonts, contact the Agfa OEM Technical Sup-
port Manager at 508-658-5600, x2218.

AutoFont Support For TrueType 8

Contents
Introduction. 8-1
TrueType Information for TFM tags 8-1
Examples: Using TFM Values in Calculations 8-8

TrueType Method: 11 point at 300 dpi, 600 ppi ... 8-9
TrueType Method: 11 point at 600 dpi, 600 ppi .. 8-10

The TFM Writer Development Environment 8-10
Compiler Version 8-10
Description of Files 8-11
Compiling the TFM Writer 8-12

Generating a TrueType TFM................. 8-12

Introduction

Chapter 6 discusses AutoFont support for Intellifont FAIS
files, Intellifont Library files, and PCL Bitmap files. In addi-
tion to supporting these files, TFM generation code has
been enhanced so that it is capable of generating TFM files
from TrueType typeface files. This chapter describes each
tag contained in a TFM file created from a TrueType type-
face, as well as describing the development environment.

This chapter builds on the TFM tag information supplied in
Chapter 6.

TrueType
Information
for TFM tags

Note l'ﬂ

This section describes each TFM tag as it relates to True-
Type typefaces.

For more information about each tag, see Chapter 6.

» Subfile Type (Level 1)
Tag =400

For TrueType typefaces, symbol set codes are mapped to
Unicode values, since it is not practical to map the Unicode
value to a Master Symbol List (MSL) value. This means
that it is necessary to add a Subfile Type 2 to indicate that
we are mapping a character to a Unicode number. Applica-
tions which currently depend on MSL numbers must be
modified to interpret a Subfile Type of 2 and a Symbol Map
with Unicode numbers.

» Copyright Information (Level 3)
Tag =401
Copyright information is found in the “name” table of the

TrueType file. The Name ID for the copyright information is
Zero.

AutoFont for TrueType 8-1

8-2 AutoFont for TrueType

» Comment Information (Level 3)
Tag =402
Comment information may be found in the “name” table of

the TrueType file. Name ID 4 is used to form the comment
information.

» Symbol Map (Level 1)
Tag =403
This map is filled with Unicode values, since a conversion

from Unicode to MSL numbers is not practical. This is indi-
cated by a new Subfile Type of 2 (Tag 400).
* Symbol Set Directory (Level 1)

Tag =404
For TrueType typefaces, special .SYM files are used to map
symbol set codes to Unicode values instead of CG character
numbers. Unicode numbers are mapped to internal glyph in-
dices using the Format 4 Subtable of the “cmap” table. The
correct character metrics are retrieved from the “glyf”’

table and associated with the Unicode number in the TFM
Symbol Map.

» Unique Association ID (Level 3)
Tag =405
A date stamp for the TrueType typeface is created from the
date and time of the TrueType typeface file.
» Point (Level 1)
Tag = 406
The point size used for TrueType TFM files is 1/72 inch per
point.
» Nominal Point Size (Level 1)
Tag = 407
This tag contains the number 250.

» Design Units (Level 1)
Tag =408
The Design Units tag is filled with the TrueType field
head.unitsPerEm.
» Type Structure (Level 1)
Tag =410
The Type Structure tag is filled with the field PCLT.Style
bits 5-9.
» Stroke Weight (Level 1)
Tag =411
The Stroke Weight tag is filled with the field
PCLT.StrokeWeight.
» Spacing (Level 1)
Tag =412
The Spacing tag is filled using the field PCLT.Pitch for fixed
pitched fonts, and zero for proportionally spaced fonts.
» Slant (Level 1)
Tag =413
The Slant tag is filled using the field post.italicAngle.
» Appearance Width (Level 1)
Tag =414
The Appearance Width tag is filled using the field
PCLT.Style, bits2-4.
» Serif Style (Level 1)
Tag =415
The Serif Style tag is filled using the field PCLT.SerifStyle,
bits 0-5.
» Typeface (Level 2)
Tag =417
The Typeface tag is filled using the field PCLT.TypeFace.

AutoFont for TrueType 8-3

» Typeface Source (Level 3)

Tag =418
The Typeface Source tag is filled using the unique ID string
from the “name” table. This string has a Name ID of 3.
» Average Width (Level 2)

Tag =419
The Average Width field is filled using the field
0S/2.xAveCharWidth.
e Maximum Width (Level 2)

Tag =420
The Maximum Width tag is filled using the maximum

Blackwidth (rightExtent — leftExtent) of all the characters
in the typeface.

 Inter-word Spacing (Level 2)
Tag =421
The Inter-word Spacing tag is filled using the field
PCLT.Pitch.
» Recommended Line Spacing (Level 2)
Tag =422
The Recommended Line Spacing tag is filled by using the
computation head.unitsPerEm * 1.2.
» Capheight (Level 2)
Tag =423
The Capheight tag is filled with the field PCLT.CapHeight.
» x-height (Level 2)
Tag =424
The x-height tag is filled with the field PCLT.xHeight.

8-4 AutoFont for TrueType

* Ascent (Level 2)
Tag =425
The Ascent tag is filled using the field 0S/2.sTypoAscender.
» Descent (Level 2)
Tag =426
The Descent tag is filled using the field OS/2.sTypoDescender.
* Lowercase Ascent (Level 2)
Tag =427
The Lowercase Ascent tag is filled using the highest ascent
for the lowercase letters a — z.
* Lowercase Descent (Level 2)
Tag =428
The Lowercase Descent tag is filled using the lowest
descent for the lowercase letters a — z.
» Underscore Depth (Level 1)
Tag =429
The Underscore Depth tag is filled with the value
- (head.unitsPerEm/ 5).
» Underscore Thickness (Level 1)
Tag =430
The Underscore Thickness tag is filled with the value
head.unitsPerEm / 20.
» Uppercase Accent Height (Level 2)
Tag =431
The Uppercase Accent Height is set to the highest ascent

value for the uppercase accented characters in the Unicode
range 0x00c0 thru 0x00de.

AutoFont for TrueType 8-5

8-6 AutoFont for TrueType

» Lowercase Accent Height (Level 2)
Tag =432
The Lowercase Accent Height is set to the highest ascent

value for the lowercase accented characters in the Unicode
range 0x00e0 thru 0x00ff.

* Horizontal Escapement (Level 1)

Tag =433
The Horizontal Escapement tag is filled using the field
hmtx.hMetrics[i].advanceWidth.
» Vertical Escapement (Level 1)

Tag =434
The Vertical Escapement tag is set to zero.
+ Left Extent (Level 1)

Tag =435
The Left Extent tag is filled using the field
hmtx.hMetrics[i].Isb.
* Right Extent (Level 1)

Tag =436
The Right Extent tag is filled using the computation
hmtx.hMetrics[i].Isb + (glyf[i].xMax - glyf[i].xMin).
» Character Ascent (Level 1)

Tag =437
The Character Ascent tag is filled using the field
glyf[i].yMax.
» Character Descent (Level 1)

Tag =438
The Character Descent tag is filled using the field
glyf[i].yMin.

» Kern Pairs (Level 2)

Tag =439
The Kern Pairs tag is filled using the “kern” table in the
TrueType file. The Format 0 “kern” table is used.
» Sector Kern Information (Level 2)

Tag =440
Sector Kern information is not available from a TrueType
file.
» Track Kern Information (Level 2)

Tag =441
Track Kern information is not available from a TrueType
file.
» Typeface Selection String (Level 1)

Tag =442
The typeface selection number is found in the field
PCLT.TypeFamily.
* PANOSE Information (Level 3)

Tag =443
The PANOSE Information is found in the structure
0OS/2.panose. It is composed of 10 unsigned bytes.

AutoFont for TrueType 8-7

Examples:

Using TFM Values
in TrueType
Calculations

Note l'ﬂ

8-8 AutoFont for TrueType

These two examples calculate EMsize for a printer with
resolution set at 600 dpi and the Unit of Measure setting at
both 300 (default) and 600 PCL Units per inch.

Device dots determine the resolution to which the character
is rendered. The PCL Units of Measure setting determines
the accuracy of the placement of the character.

For LaserdJet 4 printers, the Unit of Measure command
defines how a “dot move” is interpreted. Font metrics
should be calculated based on the current Unit of Measure.
The default Unit of Measure is 300 PCL Units per inch. For
more information, see the “Units of Movement” discussion
in Chapter 4, or refer to the PCL 5 Printer Language Tech-
nical Reference Manual.

TrueType TFM data must be calculated by rounding twice
to find the desired metric value.

EMsize = round(c * b * dpi)
x = round(d/e * EMsize * uom/dpi)
where:
EMsize = size of EM in device resolution dots
¢ = point size of font
b = inches per point
dpi = device resolution
x = desired metric value in units of measure
d = metric value in Design Units
e = number of Design Units in the design EM

uom = PCL Units of Measure

TrueType Method: Assume the following values:
11 point at
600 dpi, 300 uom

b =1 inch/72 points (Tag 406)

¢ =11 points

d = 1451 Design Units (Tag 433)
e = 2048 Design Units (Tag 408)
dpi = 600 dots per inch

uom = 300 PCL Units of Measure

EMsize = round(11 * 1/72 * 600)
round(91.66)
92 dots

x

= round(1451/2048 * 92 * 300/600)
round(32.591)
33 PCL Units of Measure

AutoFont for TrueType 8-9

TrueType Method:
11 point at
600 dpi, 600 uom

Assume the following values:

b =1 inch/72 points (Tag 406)

¢ =11 points

d = 1451 Design Units (Tag 433)
e = 2048 Design Units (Tag 408)
dpi = 600 dots per inch

uom = 600 PCL Units of Measure

EMsize = round(11 * 1/72 * 600)
= round(91.66)
= 92 dots

X = round(1451/2048 * 92 * 600/600)
round(65.181)
65 PCL Units of Measure

The Development
Environment
for the TFM Writer

Compiler Version

8-10 AutoFont for TrueType

In this section, the development environment for the True-
Type TFM Writer source code is described.

The TFM Writer code was written in C and compiled
using Microsoft C version 7.0. You will need the following
Microsoft Utilities to compile the TFM Writer:

* Microsoft C Compiler version 7.0
+ LINK Segmented-Executable Linker version 5.10

+ EXEPACK Executable File Compression Utility
version 4.06

+ NMAKE Program Maintenance Utility version 1.11

Description of Files

The TrueType TFM Writer source code involves the follow-
ing source files:

File Name Description

DEVELOPC Code which creates an intermediate ASCII version of the TFM file from the
information which is passed from the code in tfmwrite.c. The code in wt-
tfm.c takes this ASCII file and converts it into a binary TFM file.

FONTALIA.TT | An ASCII file which contains HP Font Alias information for those TrueType
files without a PCLT table.

INTRFACE.C Code which provides an interface around the executables for the different
typeface file formats. The executable modules bitmap.exm, nsbitmap.exm,
fais.exm, library.exm, truetype.exm, and wt-tfm.exm are called by this code.

IOBYTES.C Code which provides file reading and writing routines for both Intel and
Motorola byte ordering. This code is used by wt-tfm.c and the TrueType
compilation of tfmwrite.c.

TFM.ERR Strings describing error conditions which may occur during TFM
generation.

TFMDEF.H Header file containing general TFM-related definitions.

TFMERROR.H | Header file containing the definitions of error codes which may be returned
by functions during TFM generation.

TFMGLOB.H Header file containing global variable definitions for the TFM generator.

TFMTAG.H Header file containing definitions of the TFM tag numbers.

TFMWRITE.C Code which extracts necessary information for TFM generation from the
typeface file. This information is passed to code in develop.c.

TIMEG.TTF A TrueType typeface file containing the Universal glyphs for the TrueType
typefaces.

TTDEFS.H Header file containing structure definitions for the TrueType version of the
TFM generator.

TTMAK An NMAKE make file for the TrueType version of the TFM generator. To
compile the TrueType version of the TFM generator, change the “#define”
line at the beginning of the tfmdef.h file to “#define TT”. Then execute
“NMAKE /F TTMAK”.

WT-TFM.C Code which creates the binary TFM file from the information in the ASCII

file, which was created by the code in develop.c.

AutoFont for TrueType 8-11

Compiling the
TFM Writer

Generating a
TrueType TFM

8-12 AutoFont for TrueType

For your convenience, there exists an NMAKE make file for
the TrueType version of the TFM Writer. You will need the
programming utilities described in the section above on
“Compiler Version”. To compile the TrueType version of the
TFM generator, change the “#define” line at the beginning
of the tfmdef.h file to “#define TT”. Then execute “NMAKE
/F TTMAK”.

Before running the TFM Writer, check the TTSYM subdirec-
tory to ensure that the correct symbol set description files
are present. The TFM Writer generates symbol set
information for each SYM file found in the TTSYM subdirec-

tory.

By default, TFM files are created in the FILES subdirec-
tory. Ensure that the FILES subdirectory exists.

To create a TFM file, run the INTRFACE.EXE shell by typ-
ing INTRFACE at the DOS prompt. The first prompt in the
INTRFACE shell asks you from which typeface file format
you wish to generate a TFM file. Type “T” to indicate a True-

Type typeface.

Next, the shell prompts you for the path to your directory
containing the typeface for which you wish to generate a
TFM. For example, the subdirectory TTF could be created
and used to store TrueType typeface files. Type TTF to indi-
cate the TTF subdirectory. You will then be prompted for
the filename of the typeface file.

You will then receive a series of prompts about path and file
names. The first prompt will ask you for a path to the direc-
tory containing the symbol set description files. Press re-
turn to accept the default subdirectory of TTSYM. The
second prompt will ask you for a path and file name for the
Universal glyph file. Press return to accept the default file
name of timeg.ttf. The third prompt will ask you for a path
and file name in which to store an intermediate ASCII file
containing TFM information. Press return to accept the de-
fault file name of RESULTS.TAG. The fourth and final
prompt asks for a path name to a subdirectory in which to

create the TFM file. Accept the default subdirectory of
FILES.

Following the process just described, a TFM file is created
in the FILES subdirectory. You are then prompted whether
you wish to create another TFM file. Type N to indicate no,
which returns you to the DOS prompt.

AutoFont for TrueType 8-13

Raster Graphics

Contents

Introduction 9-1
The Raster Graphics System 9-1
Using Raster Graphics.......................... 9-3
Raster Compression Modes 9-5
Simple Binary Transfer Mode 0) 9-5
Run-Length Encoding Mode 1) 9-6
TIFF Encoding Mode 2) 9-7
Delta Row Compression Mode 3).............. 9-8
Adaptive Compression (Mode 5) 9-12
Compression Mode Performance 9-15
End Raster Graphics 9-16
Positioning the Cursor for Raster Graphics 9-17
Merging Text With Raster Graphics 9-17

Auto-Rotation of Raster Images 9-20

Introduction

The PCL 5 Laserdet printers provide significant enhance-
ments over PCL 4 printers. Many of these enhancements
are graphics-related. First of all, the PCL 5 LaserdJet print-
ers have an improved raster graphics feature set providing
a considerable performance increase over previous raster
graphics implementations. Next, a set of features called the
Print Model allows users to fill images, rectangles, and
even fonts with shades and patterns, and to control the in-
teraction between the overlapping images. Finally, to sup-
port many business graphics applications and to provide
high-performance graphics capabilities, the PCL 5 LaserdJet
printers support HP-GL/2 vector graphics commands.

The subject of PCL 5 graphics is covered in three chapters.
This chapter discusses using raster graphics, Chapter 10 ex-
plains the HP-GL/2 graphics capabilities, and Chapter 11
discusses the Print Model.

The Raster Graphics
System

The PCL 5 Laserdet printers print raster images using
what is called the Raster Graphics System. The Raster
Graphics System provides the necessary tools to use raster
graphics as an organized system. (HP-GL/2 is used much
the same way—as a coherent graphics system within the
PCL printer language.) The Raster Graphics System is the
term which encompasses the printer’s raster graphics print-
ing capabilities, and includes the combination of PCL 4 ras-
ter functionality with the addition of some more powerful
features.

Using the Raster Graphics System, images can be defined
using the concept of a Raster Graphics Picture. The image
area of the picture is defined using the raster height and
raster width commands.

By defining the image area, images can be formed without
having to transmit raster data rows that are all the same

Raster Graphics 9-1

9-2 Raster Graphics

length. Using the image area as a boundary, the printer
clips data rows that are too long and zero-fills rows up to
the height and width boundaries of the image (on the right
and bottom). In other words, unspecified raster data is auto-
matically zero-filled where rows are shorter than the speci-
fied width and where rows are not sent to the full height
(length) of the picture.

Raster
Width

Raster Image

Clipped at
Raster
Graphics
Raster P1cture.
Height Boundaries

Raster Graphics Picture
Defined by the Raster
Height & Width
Commands

Figure 9-1. The Raster Graphics Picture

The ability to define a raster image area is augmented by
four modes of raster data compression. The compression
modes reduce the amount of memory needed to store raster
images on the host device and increase the speed of print-
ing those images. These added features provide significant
performance benefits for raster graphics printing.

Another related performance enhancement, the Y offset
command, allows the user to skip a specified number of dot
rows to the starting point of the next raster line, reducing
the amount of 0 byte rows needed to position a raster image.

For improved raster graphics compression, Hewlett-
Packard has developed a utility called FASST which uses
the best encoding method for each row, depending on graph-
ics data and the compression modes available to the particu-
lar printer. (FASST is discussed in Appendix E.)

In total, the raster graphics capabilities of the PCL 5 Laser-
Jet printers provide a powerful system that reduces the
amount of data and time needed to print a raster image.
Not only is the Raster Graphics System a powerful exten-
sion to the raster graphics capabilities of PCL 4 LaserdJet
printers, but it also provides opportunities for future func-
tionality that depend on the well-defined raster area that
the system employs.

Using Raster
Graphics

The Raster Graphics System is made up of ten PCL com-
mands: start raster graphics, end raster graphics (two of
them), transfer raster data, raster compression, raster pres-
entation, raster resolution, raster height, raster width, and Y
offset. The normal execution sequence of these commands is
listed below to demonstrate the Raster Graphic Picture
concept:

* Raster Presentation

* Raster Resolution

* Raster Height

* Raster Width

+ Start Graphics

* Raster Compression

* Transfer Raster Data Row #1

Raster Graphics 9-3

9-4 Raster Graphics

Note l'a

» Transfer Raster Data Row #2
* Y Offset

» Transfer Raster Data Row #3
» Raster Compression

» Transfer Raster Data Row #n
* End Graphics

Notice that the raster presentation mode, resolution, and
raster area dimensions are all set outside the start..data..
end sequence of commands and that the entire picture is
sent during the start..data..end sequence, choosing the
most effective compression mode for each raster row.

After the start raster graphics command, most commands
other than transfer raster data, data compression com-
mands, and the Y offset command imply an end raster
graphics command. The commands for raster presentation,
start raster graphics, raster resolution, raster width, and ras-
ter height are ignored in raster graphics mode (that is, be-
tween the start raster graphics and end raster graphics
commands) and do not imply an end raster graphics com-
mand.

Raster presentation and raster resolution are true modes in
the sense that, once specified, they are in that mode unless
explicitly changed or reset to their default.

Only raster data appearing within the intersection of the
logical page, the printable area, and the raster margins are
printed. If the raster width and/or the raster height have
not been specified, then the intersection of the logical page
and the printable area determine where the raster image
appears. In any case, data outside the intersection is
clipped.

Raster Compression
Modes

Simple Binary
Transfer (Mode 0)

Raster data is always sent to the LaserdJet printers using
the transfer raster data command, Ec*b#W([raster data
bytes]. The PCL 5 printers have five ways of interpreting
the raster data, four of which are data compression modes:

* Uncompressed (simple binary transfer)—Mode 0
* Run-length compression—Mode 1

* Tagged Image File Format (TIFF) version 4.0
compression (PackBits)}—Mode 2

* Delta row compression—Mode 3
* Adaptive compression—Mode 5

The following list shows the graphics compression modes
supported by the different LaserdJet printers:

Printer Modes
Laserdet II, IID and earlier 0
LaserdJet TP 0,1,2
Laserdet IIIP, 4 0,1,2,3,5
LaserdJet III, I1ID, IIISi 0,1,2,3

The compression mode command (Ec*b#M) specifies which
raster compression mode will be used for the raster data
that follows it. The selected compression mode stays in ef-
fect until it is explicitly changed, an end raster graphics
command (5&*rB or ?*rC)* is received, or until the printer
is reset. More than one compression mode may be used for
a raster image, providing the capability to optimize the per-
formance of raster graphics files.

* Use Ec*rB for all printers except Laserdet IIIP, IIISi and 4.

Using the unencoded method, each bit describes a single
dot. The most significant bit of the first byte, bit 7, corre-
sponds to the first dot within that row; the least significant

Raster Graphics 9-5

Run-Length

Encoding

9-6 Raster Graphics

(Mode 1)

Note l'a

bit of the last byte, bit 0, corresponds to the last dot, etc.
This method is available on all LaserdJet printers.

The following illustration demonstrates how a binary raster
image is sent to the printer. Each transfer raster data com-
mand transfers one row of ASCII data which is converted
into a dot pattern. As the example indicates, each data byte
represents eight dot positions. Each “1” represents a dot
and each “0” represents a white space.

Command Indicates
3 Bytes of Graphics Data

Ec*b3WABC
I_I_,
I
ASCII A B C
Binary 91000001 010000190 91000011

Dots

Using this encoding method, as with the other two compres-
sion modes, raster data is sent to the printer in the same
way as the simple binary transfer described above. How-
ever, each compression mode causes the printer to interpret
the data differently. Using run-length encoding, the raster
data is interpreted in byte pairs: the first byte is a number
that specifies how many times the pattern in the second
byte is repeated.

The number in the first byte can range from 0 to 255. A zero
value indicates that the pattern only occurs once (that is, it
is duplicated zero times); a count of 255 means the pattern
occurs 256 times (it is duplicated 255 times).

Run-length encoding requires the use of byte pairs. If run-
length encoding is selected and a transfer raster data com-
mand with an odd value field is received, the transfer data
sequence is ignored.

Example: This example demonstrates run-length encoding in compari-
Run-Length son with unencoded raster data:

EnCOding BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7Y
Binary 01010101 01010101 01010101 01010101 01000001 01010100 01010100
ASCIl U U U U A T T

The data shown above would be sent to the printer as
shown below if sent unencoded (simple binary transfer):

E*bIm7WUUUUATT

Using the run-length encoding scheme, the data would be
sent as follows (the parentheses are shown for clarity—they
would not actually be sent in the command string—also, the
number in parentheses isn’t the ASCII code for 3, 0, or 1,
but the byte values 3, 0, and 1 respectively):

Ec*bIm6W(3)U@)A(1)T

Tagged Image File The TIFF compression mode is a combination of simple bi-
Format (TIFF or nary transfer and run-length encoding. Blocks of repeated
; ; bytes and blocks of non-repeated bytes are differentiated by
PackBits) Encoding using bit 7 of the control byte. If the value of the control
(Mode 2) byte is negative (-1 to -127), the byte following the control
byte is to be repeated the absolute value of “control byte”
times (a “replicate run”). If the control byte is positive (0 to
127), it is a “literal run” (that is, the control byte is followed
by [control byte + 1] data bytes).

Note % A control byte of -128 is ignored; the next byte is then
treated as a control byte. (The control byte is represented
by two’s complement.)

When using the TIFF compression mode, it is best to en-
code a two-byte replicate run as a repeated byte. However,
when a two-byte replicate run is preceded and followed by a
literal run, it is best to merge the three into one literal run.
Three-byte repeats should always be encoded as replicate
runs.

Raster Graphics 9-7

Note l'a

Example:

TIFF (PackBits)

Encoding

Delta Row
Compression

9-8 Raster Graphics

(Mode 3)

If the byte count of the value field is met before the literal
or replicate run count is met, the byte count has prece-
dence. Once the byte count is met, if the last byte encoun-
tered is a control byte, it will be ignored.

This example shows the use of TIFF v. 4.0 encoding to com-
press raster data:

BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7Y
Binary 01010101 01010101 01010101 01010101 01000001 01010100 01010100
ASCIl U U U U A T T

The data shown above would be sent as follows using a sim-
ple binary transfer (unencoded):

E*bIm7WUUUUATT

Using TIFF v. 4.0 encoding, the data would be sent as fol-
lows:

E*b2m6W(-3)U@A(-1)T or ?*b2m6W(-3)U(2)ATT

Delta row compression is quite different than the previous
two compression modes. As its name implies, delta row com-
pression is accomplished by encoding the changes in one
raster row compared to the previous row of data (the seed
row). Delta row compression generally offers the largest
degree of performance gain compared to unencoded data,
but requires a slightly more detailed explanation to grasp
the concept.

For delta row compression, the raster data is segmented
into:

* Command byte(s)

» Replacement byte(s).

The command byte is segmented as follows: the first three

bits (most significant bits) indicate the number of consecu-
tive bytes to replace and can range from 0 to 7 (0 means re-
place 1 byte, and 7 means replace 8 bytes). The lower five

bits (least significant bits) contain the relative offset to the
first byte to replace. The replacement byte(s) follow the com-
mand byte(s).

The illustration below shows how the transfer raster data
command is structured for delta row compression:

—|—I—| |—I: Command Byte

Ec*b3m2W0000000011111111
1 Il

Indicates 2 Bytes

Selects Delta Row
Compression Mode

Number of Bytes to Replace
Replacement Byte

Relative Offset

As mentioned, the relative offset is contained in the lower
five bits of the command byte, allowing an offset value from
0 to 31 that indicates the distance to the next byte that
needs replacing. The compression mode allows for offsets
larger than 31 bytes as follows:

A value of 0 - 30 indicates the relative offset. A zero value
means that the next untreated byte should be replaced,
while a 30 indicates that the 31st byte from the present
byte should be replaced.

A value of 31 indicates that the byte following the command
byte is also interpreted as an offset. If the offset is too large
to be indicated by the five bits of the command byte and the
next whole byte, the offset byte can be set to 255, indicating
that the following byte is also an offset, etc.

Raster Graphics 9-9

9-10 Raster Graphics

For example, consider the following transfer raster data
command:

Ec*b3m4W 09011111 11111111 10900007 10919111

Replace 1 Byte Replacement Byte

Eg *b3m4W@@®1}111 11111111 10000000 1@@1@1|11
| | |
Relative Offset of |
31 Means Next
Byte is Offset Too Final Offset Byte

Additional 255-Byte Adds 128 Bytes;
Offset Means Next 31+255+128 = 414 Bytes

Byte is Offset Too

Since the least-significant five bits of the command byte are
all 1’s, the following byte is also an offset byte; likewise,
since all the the offset bits are also set to 1, the byte after
that is an offset byte too. In total, the offset is 414 bytes (31
bytes + 255 bytes + 128 bytes = 414 bytes).

How The Raster Y Offset Command Affects The Seed Row

The seed row is affected by the Y offset. A raster Y offset
(Ec*b#Y) skips raster rows, leaving them blank (white). It
also initializes the seed row to zeros.

For example, while in the delta row compression mode (and
all other compression modes), the following commands have
the described effects:

Ec*bOW Replicate the previous row. The seed
row is unchanged.

Ec*b1Y Move down one raster row. The seed
row is set to zeros.

The seed row is affected by every raster graphics transfer,
regardless of the compression mode used. For example, an
Ec*b@W, while using mode 1 compression (run length encod-
ing), sets the seed row to all zeros. This allows delta row
compression to be mixed with other modes in order to
achieve better compression performance. Other cursor posi-

Note l'ﬂ

Example:
Delta Row
Compression

tion moves cause the seed row to be set to zeros. (Remem-
ber, non-graphic cursor moves have the same effect as an
end graphics command.)

If the byte count of the transfer raster data command value
field is less than the literal number of bytes that can be re-
placed, the byte count has precedence. Also, if the last byte
is a control byte, it is ignored. Therefore, Ec*b1W does not af-
fect the seed row, but causes the previous row to be repli-
cated (in mode 3 only).

The following example demonstrates how to compress the
following data using the delta row method of compression.
(The bytes highlighted in italic type indicate those bytes
needing replacement—that is, those bytes that are different
from the previous row, the seed row.)
Byte No. 1 2 3 4 5
Rowl 00000000 11111111 00000000 00000000 00000000
Row2 00000000 11111111 11110000 00000000 00000000
Row3 00001111 11111111 11110000 10101010 10101010

Ec*r1A — The start raster graphics command initializes the
seed row to all zeros.

Row 1 — Ec*b3m2W(00900901)(11111111)

The 3m selects the delta row compression mode and the

2 W indicates that 2 bytes of data will follow. The first
three bits of the first data byte, the command byte, signify a
single byte replacement (all three bits are 0). The next five
bits indicate an offset of 1 byte from the current position.
The replacement byte follows and contains 11111111.

Row 2 — Ec*b2W(00000010)(11110000)

The first three bits of the command byte indicate that one
byte will be replaced and the next five bits indicate a relative
offset of 2, so the replacement will occur 2 bytes from the cur-
rent position. The replacement byte follows (11110000).

Raster Graphics 9-11

Adaptive
Compression

9-12 Raster Graphics

(Mode 5)

Row 3 — Ec*b5W (20000000) (90001111) (901 00010)
(10101010)(10101010)

As in the other rows, the first three bits of the command
byte are zero, indicating a single byte replacement. The

five offset bytes indicate a relative offset of zero bytes. The
replacement byte follows and is 00001111. The third byte is
another command byte and the first three bits signify the
replacement of two bytes (the top three bits are 001). The
offset bits indicate an offset of two bytes from the current
position. The fourth and fifth bytes are the two replacement
bytes.

The LaserJet IIIP and 4 printers have another compression
mode called adaptive compression, or mode 5 compression.
Adaptive compression enables the combined use of any of
the four previous modes (0 through 3), plus it includes the
ability to print empty rows (all zeros) or to duplicate rows.
This compression method also allows for the transfer of
raster data in a block format rather than row by row.

The adaptive compression mode minimizes the amount of
data needed to define a raster image, resulting in faster I/O
and minimized disk storage requirements. This compres-
sion method also reduces the amount of PCL overhead,
since a PCL command is not needed for every raster row.

Using adaptive compression, the printer can usually print
more raster graphics with the standard memory because it
stores the raster image in its compressed form, and then de-
compresses it at print time. In contrast, for the other com-
pression methods, the printer decompresses the raster data
as it is received.

Minimizing Memory Requirements for the LaserJet IlIP

For the Laserdet IIIP printer, if the following guidelines are
followed, an entire letter-size page of 300 dpi graphics can
often be printed with the printer’s base memory. (This isn’t
necessary for the LaserdJet 4 printer, since it uses automatic
data compression in “memory low” conditions.)

» The packaged mode 5 image must fit in available memory.

» The raster image must be printed in either portrait
orientation, or with Presentation mode 3.

» The raster image resolution must be 300 dpi.

» The source and pattern transparency modes must both
be set to transparent.

» No raster fill types other than black can be applied.
* The raster image cannot be nested in a macro.

» The raster block must begin in the printable area.

Using Adaptive Compression

Adaptive compression interprets the raster image rows as a
block of raster data rather than as individual lines. The re-
sult of this interpretation is that the Transfer Raster Data
(Ec*b#W) command is sent only once at the beginning of a
raster data transfer block. (There is an upper limit of 32
Kbytes in any block.) The Transfer Raster Data command
identifies the number of bytes in the block.

For adaptive compression, the raster row format is:
<Command byte><# of bytes/row or rows affected> <Raster bytes>
The command byte is a single 8-bit byte.

The command byte designates either the type of compres-
sion mode, an empty row, or row duplication. Values for the
command byte are shown below:

Command byte values
No compression
Run-length compression
TIFF compression (version 4.0)
Delta Row compression

Empty Row

L B W N = O

Duplicate Row

Raster Graphics 9-13

Example:
Adaptive
Compression

9-14 Raster Graphics

» The # of bytes/row or rows affected field is a two-byte
field, with the high-order byte first. For command byte
values 0 - 3 (in the table above), the # of bytes/row
specifies the number of bytes for the row. For command
byte values of 4 and 5, this byte identifies the number of
empty or duplicate rows.

* The raster bytes field contains the actual data bytes that
follow. No raster bytes fields are sent for the empty row
and duplicate row command-byte values.

Empty Row

The empty row command-byte value (4) causes a row of ze-
ros to be printed. The number of empty rows printed de-
pends on the value contained in the # of bytes/row or rows
affected field following the command byte. A range of O to
32767 empty rows can be printed per command. The empty
row command byte resets the seed row to zero and updates
the cursor position. No raster bytes field is sent.

Duplicate Row

The duplicate row command-byte value (5) causes the pre-
vious row (seed row) to be printed. The row can be dupli-
cated the number of times indicated by the value contained
in the # of bytes/row or rows affected field following the com-
mand byte. A range of from 0 to 32767 row duplications can
be performed per command. Duplicate row updates the cur-
sor position but does not change the seed row. No raster
bytes field is sent.

This example shows the use of adaptive compression to en-
code the following four rows of raster data.

Byte No. 1 2 3 4 5

Row 1 00000000 00000000 00000000 00000000 00000000
Row 2 00000000 00000000 00000000 00000000 00000000
Row 3 01010101 01010101 01010101 01010101 01010101
Row 4 01010101 01010101 01010101 01010101 01010101

Row 1 — &*b5m11W(00000100)(00000000)(00000010)

The 5m selects the adaptive compression mode and the 11W
indicates there are 11 bytes in this raster data block. The
command byte follows (value of 4), which indicates there
are a number of empty rows. The following two bytes indi-
cate the number of empty rows (2).

Row 3 — (00000010)(00000000)(000000101)(11111100)
(01010101)

This row has a command byte of 2, indicating TIFF 4.0 com-
pression, followed by two bytes indicating the number of
bytes in the row (5), followed by the TIFF data (11111100)
(01010101) indicating four repetitions of the following byte
(11111100 indicates the 4 repetitions, and is represented as
the two’s complement of 4).

Row 4 — (00000101)(00000000)(000000001)

This row has a command byte of 5, indicating duplicate
row, followed by two bytes indicating the number of dupli-
cate rows (1).

Notice in this example that there is only one transfer raster
graphics command (Ec*b#W), indicating the start of the
graphics block, instead of one command at the start of every
row (as is necessary with all the other compression modes).
Also notice that the example uses only mode 2 (TIFF) com-
pression, but any of the other compression modes may be
used as well, as long as only one compression mode is used
per raster row.

Compression Mode
Performance

The choice of the best compression mode for the highest per-
formance is dependent on several factors. In the LaserdJet
ITIP and LaserdJet 4 printers, mode 5 (adaptive) compres-
sion is the most efficient. For the remaining printers, the
best compression method depends on the particular image.
For optimum raster graphics compression, Hewlett-Packard

Raster Graphics 9-15

A
Note l'a

recommends that developer’s incorporate the FASST utility,
which looks at each raster row and determines which com-
pression method is the best for that row. The FASST utility
is discussed in detail in Appendix E.

“Performance” refers to the ability to throughput data. Com-
pression always reduces I/O time, but may or may not re-
duce the printer memory requirements for a particular
image. For all PCL 5 printers, when using compression
modes 0 through 3, printer memory required for com-
pressed images is the same as for unencoded images.

End Raster Graphics

9-16 Raster Graphics

The end raster graphics commands signify the end of a ras-
ter graphic data transfer. There are two raster graphics
commands, Ec*rC and &*rB, and the command used is de-
pendent on the particular LaserdJet printer.

» For the Laserdet ITIP, IIISi, and LaserdJet 4 printers,
Hewlett-Packard recommends using the Ec*rC end raster
graphics command. (All three printers support both end
raster graphics commands, but Hewlett-Packard
recommends using E*rC.)

* For all other LaserdJet printers, use the Ec*rB end raster
graphics command.

Positioning the
Cursor for Raster
Graphics

Note l'ﬂ

When printing raster graphics, the current active cursor po-
sition (CAP) automatically moves down one dot row after re-
ceiving the final byte in the row, and then returns to the left
graphics margin. Consequently, after printing a raster im-
age, the cursor is at the left graphics margin and one dot
row below the image.

CAP Prior '
to Printing

CAP After
Printing
(One Dot Row
Below Last
Raster Row)

Figure 9-2. Raster Graphics Cursor Position

Cursor positioning for rectangular area fill graphics is dif-
ferent than for raster graphics. For rectangular area fill
graphics, the cursor position is that of the starting position
after it prints the filled graphic.

Merging Text With
Raster Graphics

Merging text and graphics involves knowing the text and
graphics boundaries so that the cursor may be moved
appropriately. Following the printing of text, the cursor
rests at the character reference point of the next character.

For fixed-pitch fonts, the cursor moves the HMI distance
for every character. For proportional fonts, the cursor

moves the horizontal escapement distance; the horizontal
escapement is one of the font metrics obtained from each

Raster Graphics 9-17

Example:
Merging Fixed-Pitch
Text With Graphics

9-18 Raster Graphics

font’s TFM file. (See the “TFM Reader” section in Chapter 6
for information on retrieving TFM data.)

The following example illustrates merging fixed-pitch text

with graphics.
ABCDEFGHIJ
KLMNOPQRST
UVWXYZABCD
EFGHIJKLMN
OPQRSTUVWX

Ec(sOpldh12v@sdb3T Select a 10-pitch, 12-point, upright,
medium Courier font.

ABCDEFGHIJ ... The printed characters “ABCDE-
FGHIJ” would occupy one inch (10
characters at 10 characters/inch).

Ec*p+75x0Y Move the cursor 75 dots (1/4 inch) to
the right, relative to the cursor posi-
tion after printing the text, and to
the top margin (Ec*pdY).

Ec*rgF Set the raster presentation mode so
that the image prints in the orienta-
tion of the logical page.

Ec*t300R Set graphics resolution to 300 dpi.

Ec*rd50s225T Define the raster image size (1.5
inches wide by .75 inches high,
which equates to 450 by 225 dots).

Ec*rlA Start raster graphics at the current
cursor position.

Ec*bdM Set raster compression mode for a
simple binary transfer (unencoded).

Ec*b57Wdata... Transfer raster graphics data.

Ec*rC End raster graphics. (Use Ec*rB if

using Laserdet III or IIID.)

Example: This example demonstrates a method of merging propor-
Merging Proportional tional text with raster graphics:
Text With Graphics

This is a test, test, test, test.
This is a test, test, test, test.
This is a test, test, test, test.
This is a test, test, test, test.

Ec(s1pl@vPs3b4101T Select a proportional, 10-point, up-
right, bold, CG Times font.

This is a test, test, . . . Print the desired text (2-inch col-
umn).

Ec*pT750x0Y Move the cursor to the top margin
and to a horizontal position 750 dots
from the left logical page boundary
(2-inch column + 1/2-inch space
between text and graphics = 2.5
inches = 750 dots).

Ec*rgF Set the raster presentation mode to
print in the orientation of the logical
page.

Ec*t300R Set raster resolution to 300 dots per
inch.

Ec*rd50s225T Define the raster image size (1.5

inches wide by .75 inches high,
which equates to 450 by 225 dots).

Ec*rlA Start raster graphics at the current
cursor position.

Ec*bdM Set raster compression mode for sim-
ple binary transfer (unencoded).

Ec*b57Wdata... Transfer raster graphics data.

Ec*rC End raster graphics. (Use Ec*rB if
using the Laserdet III or IIID print-
ers.)

Raster Graphics 9-19

Auto-Rotation of
Raster Images

9-20 Raster Graphics

The raster presentation mode command specifies the direc-
tion of print of a raster image on the logical page. The com-
mand provides two options:

The Ec*rfF command prints the image in the direction of
print, as defined by the print direction command (the
default print direction is zero, which is the same as the
logical page). For instance, let’s say you are printing a
newsletter on a portrait logical page; the newsletter has
a scanned image in the left column. If you decide to
change the logical page orientation and then print the
same newsletter, the Ec*rdF command causes the image
to rotate along with the text so that the image is at the
same relative position in the left column of that print
direction. For most applications, this is the way the user
would want to see the image.

The default option, Ec*r3F, would print the same image
along the width of the physical page, (it would start
printing at the current active cursor position, but would
be sideways relative to the text at the new orientation).
This option is beneficial for those applications requiring
that an image be placed along the width of the physical
page. For most applications, this is not the desired mode;
it is, however, the default mode in order to provide
compatibility with earlier Laserdet printers.

Figure 9-3 shows an example of both presentation modes.

Mode 0
(Print Direction 0)

Newsletter Newsletter

Landscape
Portrait
o S
Newsletter Newsletter
Landscape

Portrait

Figure 9-3. Raster Graphics Presentation Mode and Auto-Rotation

Raster Graphics 9-21

Vector Graphics

Contents

Introduction. L 10-1

Additional Laserdet 4 Features............... 10-1
The Picture Presentation Directives 10-2
PCL Picture Frame & HP-GL/2 Plot Size.......... 10-3
The Picture Frame Anchor Point. 10-4
Basic Steps for Importing an HP-GL/2 Plot 10-4
Basic Steps for Creating an HP-GL/2 Plot 10-5
When to Use Vector Graphics vs. Raster Graphics .. 10-6
HP-GL/2 & PCL Orientation Interactions. 10-7
Vector Graphics Limits 10-9
The Scaling Factor and the Picture Frame........ 10-10

Creating a Page-Size Independent Plot 10-10

The Scaling Mechanism.................... 10-11
Memory usage and HP-GL/2 10-12
Using HP-GL/2 Commands 10-13

Mixing PCL Text With HP-GL/2 Graphics 10-14

Special Font Effects Using HP-GL/2. 10-15

Introduction

Additional
LaserJet 4 Features

As part of the enhanced PCL 5 feature set, the LaserdJet
printers provide vector graphics capabilities using HP-
GL/2, the Hewlett-Packard Graphics Language. PCL 5
printers have the ability to print raster graphics and text
on the same page as HP-GL/2 vector graphics, providing the
ability to import existing HP-GL/2 graphics files or combine
vector graphics functions along with the existing raster
printing features.

Since PCL 5 includes HP-GL/2, you can offer some extra fea-
tures to your customers that would be difficult to imple-
ment or wouldn’t be feasible without HP-GL/2. Some of
these features include rotating text at any angle, creating
mirrored text images, combining HP-GL/2 plots with high-
quality LaserdJet fonts, and importing existing HP-GL/2
files. As you would expect, using HP-GL/2 you can draw cir-
cles, rectangles, lines, and bezier curves (Laserdet 4 only)
much more efficiently than using raster graphics, especially
at 600 dots per inch.

The LaserdJet 4 printer provides some HP-GL/2 features
that are not available with other PCL 5 printers:

» Bezier curves

Efficient bezier curves are created using the BZ (Bezier Ab-
solute) and BR (Bezier Relative) commands. These two com-
mands allow you to specify cubic parametric curves using
four control points (the current pen position and three addi-
tional control points).

» Non-zero Winding Fill Type

The Laserdet 4 printer provides an additional fill type for
filling polygons: non-zero winding fills. This type of fill
gives software greater flexibility and control over fill pat-
terns as they are applied to polygons.

* PCL-Compatible Label Origin

The Laserdet 4 printer provides a PCL-compatible label ori-
gin option for label placement. Using the LO21 command,

Vector Graphics 10-1

Note l'a

labels are rendered from the character reference point, just
as they are when using PCL.

» User-Defined Patterns for Fill Type and

Screened Vectors
Patterns created using the PCL user-defined pattern com-
mand (Ec*c#W) can be used to fill polygons and screened vec-
tors. This is accomplished using the FT22 (Fill Type)
command and the SV22 (Screened Vectors) command. (User-
defined fill patterns are also supported by the Laserdet ITIP
printer, however the feature was previously undocumented.)

These HP-GL/2 features are described in detail in the
PCL 5 Technical Reference Manual.

The Picture
Presentation
Directives

10-2 Vector Graphics

Incorporating HP-GL/2 within PCL 5 is accomplished using
a group of commands called picture presentation directives.
The picture presentation directives provide the means to in-
corporate HP-GL/2 within PCL 5, supplementing or overrid-
ing the usual HP-GL/2 functionality when necessary. They
allow the application to enter and exit the HP-GL/2 environ-
ment and to define a picture frame for a vector graphic im-
age. They also allow the printer to calculate a scaling factor
with which to scale images. This enables the user to create
a graph or to import an existing HP-GL/2 graph so that it
can be scaled to a desired size and placed anywhere on the
PCL logical page.

PCL Picture Frame
& HP-GL/2 Plot Size

When importing existing HP-GL/2 images, the ability to
scale them to a specific size is achieved using the PCL Pic-
ture Frame and the HP-GL/2 Plot Size commands. The pic-
ture frame commands specify the width and height of the
rectangle, or picture frame, that will define the image area
on the PCL page; the HP-GL/2 plot size commands specify
the width and height of the original HP-GL/2 plot.

PCL Picture Presentation Directives

Anchor

» Point

Picture Frame

HP-GL/2 Plot Size

PCL Logical Page HP-GL/2 Graph

N\ /

Resulting HP-GL/2 Image
Within PCL Picture Frame

Figure 10-1. Picture Frame, Plot Size, and Anchor Point

The ratio of the PCL picture frame size to the HP-GL/2 plot
size defines the picture frame scaling factor. (There are actu-

Vector Graphics 10-3

ally two scaling factors, one for the x direction and one for
the y; to simplify this discussion, they will be referred to col-
lectively as the picture frame scaling factor.)

When an HP-GL/2 plot is imported for printing on a PCL 5
printer, the plot is scaled to fit within the rectangular area
referred to as the PCL picture frame by applying the picture
frame scaling factor. After applying this scaling factor, if por-
tions of the plot extend outside of the picture frame area,
they are clipped; no part of the HP-GL/2 plot can extend be-
yond the picture frame.

The Picture Frame
Anchor Point

As mentioned, the PCL picture frame and HP-GL/2 plot
size commands determine the size of the vector image that
is printed. The actual position of the picture frame within
the logical page is specified using the picture frame anchor
point command. This command positions the upper-left cor-
ner of the picture frame at the current active position in the
PCL environment.

If an orientation change is desired, the orientation of the
HP-GL/2 plot is specified by the HP-GL/2 Rotate command
(RO) (see Figure 10-3). A change in print direction has no ef-
fect on the picture frame anchor point, the physical position
of the picture frame, or the HP-GL/2 orientation.

Basic Steps for
Importing an
HP-GL/2 Plot

10-4 Vector Graphics

In general, follow the steps below to incorporate existing
HP-GL/2 images into an application:

» Specify the picture frame dimensions (the size of the
rectangular area that the image will occupy on the page).

Note l'a

» Specify the picture frame anchor point (the position on
the logical page where the upper left corner of the picture
frame is placed).

» Specify the HP-GL/2 plot size (the size of the original
HP-GL/2 image).

* Enter HP-GL/2 mode.
* Include the HP-GL/2 plot.
» Enter PCL printer language mode.

Before the HP-GL/2 mode is exited, the last HP-GL/2 com-
mand prior to returning to PCL mode must be terminated by
a semicolon.

The commands for these steps are discussed in detail in the
PCL 5 Printer Language Technical Reference Manual and
are used in the examples in this chapter. Study the exam-
ples to get a feel for how the commands are used to print
HP-GL/2 images.

Basic Steps for
Creating an
HP-GL/2 Plot

In general, follow the steps below to create HP-GL/2 images
within your application software:

» Specify the picture frame dimensions (the size of the
rectangular area that the image will occupy on the page).

» Specify the picture frame anchor point (the position on
the logical page where the upper left corner of the picture
frame is placed).

* Enter HP-GL/2 mode.

* Create the vector graphics plot using HP-GL/2
commands.

» Enter PCL Printer Language mode.

Vector Graphics 10-5

A
Note l'a

In many cases, the default picture frame dimensions (equal
to the default text area) and default picture frame anchor
point (0,0) can be used when integrating HP-GL/2 graphics
into a PCL document.

As mentioned previously, the last HP-GL/2 command before
returning to PCL mode must be terminated by a semicolon.

When to Use Vector
Graphics Instead of
Raster Graphics

10-6 Vector Graphics

When deciding to print graphics in an application, the deci-
sion must be made whether to use raster graphics or vector
graphics. In some cases, the choice is obvious, such as im-
porting an existing HP-GL/2 file or using raster graphics to
print a scanned photograph. In other cases, the choice is not
as easy. There are some general rules, however, that can
help you steer toward one mode or the other for printing cer-
tain types of graphic images.

In general, HP-GL/2 is the preferred mode when:

* The time saved by HP-GL/2 in reducing I/O data transfer
and eliminating host vector-to-raster conversion exceeds
the printer’s vector-to-raster conversion time. For
example, using HP-GL/2 to print an 8- by 10-inch plot
(~ 1 Mbyte at 300 dpi and 4 Mb at 600 dpi) is preferable
to using raster graphics if the user has an IBM AT or
compatible and is using a serial interface.

» The image is composed of regular figures (circles,
polygons, lines, or bezier curves [Laserdet 4 only]).

e The image needs to be resolution independent.
In general, compressed raster graphics is preferred for:
e Small, complex images

e Images that can’t be accomplished with HP-GL/2, such
as scanned photographs.

HP-GL/2 & PCL
Orientation
Interactions

The orientation of the HP-GL/2 coordinate system within
the picture frame is determined by the orientation of the
PCL logical page and the HP-GL/2 rotate command (RO).
When a “RO 0;” is in effect, the origin of the HP-GL/2 coordi-
nate system defaults to the lower-left corner of the PCL pic-
ture frame. The relationship between the PCL picture
frame, picture frame anchor point, and HP-GL/2 coordinate
system is shown in Figure 10-2.

+Y PCL Text Direction
Anch o HP-GL/2 < '-;g'C:'
nc. or Default Label g
Point . .
Direction
+Y
P Picture
1_.(0’0) +X N Frame
Portrait Orientation +X ‘ 3
+Y PCL Text l Direction
/ HP-GL/2
Anchor / Default Label
Point +Y Direction
| (010) +X

Landscape Orientation

Figure 10-2. HP-GL/2 & PCL Orientation Interactions

The default HP-GL/2 coordinate system tracks the PCL logi-
cal page coordinate system so that the X axes are parallel
and increasing in the same direction and the Y axes are par-
allel and increasing in opposite directions. This axes rela-

Vector Graphics 10-7

tionship is the default HP-GL/2 orientation. The default HP-
GL/2 orientation is therefore controlled from the PCL envi-
ronment by altering the default logical page orientation.

I: A change in print direction has no effect on the HP-GL/2 ori-
Note ﬂ entation, the physical position of the picture frame, or the
picture frame anchor point.

{0,0) —> +X 0,00 —> +X
P2 &
+Y +Y
Logical
Page %
+Y
| Picture 5 |
P1 X Frame + A
©.0) gg
RO O RO 90
0,0 —> +X ©0,0)—> X
@0 8=
[e
+Y X+ 4—1 +Y -
r -<
R
& %
Picture
Frame
ad
]
RO 180 RO 270

Figure 10-3. Modifying the Default HP-GL/2 Orientation

10-8 Vector Graphics

The default HP-GL/2 orientation can be modified from the
HP-GL/2 environment with the HP-GL/2 rotate command
(RO). Rotations specified by the RO command are relative
to the default HP-GL/2 orientation. Figure 10-3 shows how
the RO command modifies the default HP-GL/2 orientation.

1
Vector Graphics The area occupied by the HP-GL/2 image is limited by four
Limits boundaries that are imposed on the vector graphics area:

* Hard-clip Limits (Printable Area)

* Soft-clip Limits

* Logical page

» PCL Picture frame

I_I _______ I-|
Edge of I I I I
Prin.ting_’ I I | Logical
Medium I I IJI_ Page
| |
| |
Hard-Clip | | : i'— —— —iT 'i
Limits IR L
(Printable =1 | | |r !| I -i |
Area) | Picture
I I | | I I I<_ Frame
Effective | | = | I |
Window | i L'_|I_ L _il :_ i
| |
|| | Il 1 semecp
N I T Limits
1 1

| (IW Command)

Figure 10-4. The Effective HP-GL/2 Graphics Window

Vector Graphics 10-9

The hard-clip limit refers to the printable area boundary,
the limits beyond which the printer cannot print. The soft-
clip limit refers to a software-controlled boundary that tem-
porarily limits the device to a particular area defined by the
HP-GL/2 IW (Input Window) command. An HP-GL/2
graphic will appear on the page only if it falls within the ef-
fective window, which is the area within the intersection of
the hard-clip limits, the PCL logical page, the PCL picture
frame, and the soft-clip window (see Figure 10-4).

The Scaling Factor
and the Picture
Frame

Creating a Page-Size
Independent Plot

10-10 Vector Graphics

When printing an HP-GL/2 plot, no picture frame scaling oc-
curs if an HP-GL/2 plot size is not specified, because the
plot and the picture frame are assumed to be the same size.
This is the preferred mode for:

» Integrated text and graphics (that is, those applications
where the graphic image is developed as part of the
overall page rather than being imported from an external
source and positioned on the page).

» HP-GL/2 plots which are page-size independent.

If an HP-GL/2 plot is page-size independent, it can be auto-
matically scaled to fit different page sizes without specify-
ing the HP-GL/2 plot size. In order for a plot to be page-size
independent, it must not specify any parameters in abso-
lute units. This implies that:

* No parameter of any command is in plotter units. The
scaled mode (SC command) must be used exclusively;
either the default locations of P1 and P2 are used or their
positions are specified with the IR (input relative P1 and
P2) command. The default window is used or the window
is specified in user units.

» For labels, only the SR (relative character size) mode is
used; the SI (absolute character size) mode is not used.

The Scaling
Mechanism

* The pen width unit selection mode (WU) is specified as
relative instead of metric.

* The pattern length for line types (LT) is specified as
relative instead of metric.

If a plot does not meet the above criteria and the plot is not
the same size as the picture frame, the HP-GL/2 plot size
must be specified in order to accomplish the desired scaling.
If it is not specified, the plot is clipped to the effective win-
dow, and no scaling occurs.

The scaling mechanism is a straightforward linear transfor-
mation; that is, the aspect ratio of the original plot is not
maintained unless the picture frame has the same aspect
ratio as the HP-GL/2 plot size. Labels (text) printed using a
bitmapped font may not respond accurately to picture
frame scaling, so scalable fonts are recommended. As with
the SI and SR commands, the raster font which most
closely matches the desired character size is used.

HP-GL/2 uses four types of units when creating plots:
* Absolute units

 Plotter units (plu)

* User units

» Picture frame units

The printer chooses the type of units using the following cri-

teria:

+ Ifthe picture frame is the same size as the HP-GL/2 plot
(no scaling is required), and user scaling is not in effect,
units are plotter units.

» Ifthe picture frame is not the same size as the HP-GL/2
plot, but user scaling is not in effect, units are picture
frame units. In effect, picture frame units are plotter
units multiplied by the current picture frame scaling
factor.

e Ifuser scaling is in effect (that is, if an SC command has
been issued), units are in user units.

Vector Graphics 10-11

* Some commands operate using only absolute units and
not user units. For example, the IP (Input P1 and P2)
command parameters are always plotter units. Likewise,
SI (Absolute Character Size) parameters are always in
centimeters. The picture frame scaling factor is always
applied to parameters of commands in this category.

Memory usage
and HP-GL/2

Note l'a

Note l'a

10-12 Vector Graphics

To completely eliminate the possibility of print overrun (Er-
ror 21), the PCL 5 LaserdJet printers offer the page protec-
tion feature option. This option is available for those users
that install at least an extra 1Mbyte of printer memory (ex-
cept Laserdet 4). (See the section on Memory Usage in Chap-
ter 2 for more information about page protection.)

The Laserdet 4 printer has enough base memory to allow
page protection at 300 dpi, but requires additional memory
at 600 dpi.

The Laserdet 4 printer allows applications to turn page
protection on and off using PJL. See the PJL Technical
Reference Manual for more information.

For those users printing without page protection, efficient
programming can help lessen the possibility of print over-
run, and can also increase printer performance. Tips for en-
hancing performance are discussed in Chapter 13 under
\ector Graphics.

“Stroke to fill” techniques are not as efficient as the use of
filled structures (circles, wedges, polygons and fonts) and
should be avoided as they consume large amounts of user
memory and increase processing time. LaserJet printers do
not emulate plotter memory management techniques.

Using HP-GL/2

Commands

Note l'a

There are two classes of vector graphics commands:

* PCL printer language commands
+ HP-GL/2 commands

The PCL printer language commands include the picture
presentation directives that allow the user to enter HP-GL/2
mode and describe the plot size, picture frame size and an-
chor point of the HP-GL/2 plot.

The HP-GL/2 commands include the kernel command set
plus the dual-context and palette extensions to the lan-
guage. These command extensions were developed to inter-
act with the PCL environment, such as the command used
to enter the PCL mode.

This portion of the chapter contains examples that show
how the PCL Printer Language and HP-GL/2 actually work
together. Examples such as printing text at any angle, print-
ing outlined fonts, and anisotropically scaling fonts are cov-
ered to show how the PCL 5 printers use HP-GL/2.

For a complete description of both the PCL and HP-GL/2
commands, consult the PCL 5 Printer Language Technical
Reference Manual. This manual contains many examples to
help you learn the functionality of the HP-GL/2 command
set.

Vector Graphics 10-13

Mixing PCL Text With The PCL 5 LaserJet printers provide the ability to combine
HP-GL/2 HP-GL/2 graphics with high-quality LaserJet fonts. The im-
Graphics age below shows an HP-GL/2 pie chart created with Laser-
Jet fonts, HP-GL/2 and PCL fill patterns, and HP-GL/2
shading.

HP-GL/2 Shading HP-GL/2 Patterns

-
-

PCL patterns

Sample Pie Chart Using HP-GL/2 Vectors

The above example is a good one for demonstrating the
interaction between PCL and HP-GL/2. The source and
executable code for this pie chart (PIEWEDGE.C) are in-
cluded on disk in the back of this manual. (For more infor-
mation on the examples contained on the included disks,
see Appendix B.)

10-14 Vector Graphics

Special Font Effects
Using HP-GL/2

Note l'a

Note l'a

There are some font effects that can only be achieved using
the built-in HP-GL/2 functionality of the PCL 5 LaserdJet
printers. These special effects can be applied to all available
LaserdJet scalable (not bitmapped) fonts. This is due to the
printer’s unique implementation of HP-GL/2. As with all
HP-GL/2 functionality in the PCL 5 printers, the user must
first enter the HP-GL/2 mode to access these features. The
examples below demonstrate the special font functionality
that is accessible using HP-GL/2.

Due to the vector method used to create the HP-GL/2-en-
hanced fonts, there may be a noticeable difference between
the print quality and throughput speed of vector-processed
fonts compared to the standard method of printing fonts
(that is, those fonts that are printed at 0, 90, 180, or 270 de-
grees and are proportionately [isotropically] scaled using
PCL). (Vector-processed fonts may not be formed quite as
precisely and may print slower compared to the standard
method of printing fonts; they are also more likely to cause
an Error 21 when page protection is off.) These shortcom-
ings are usually not crucial, but depend on the application—

the added HP-GL/2 features provide benefits that
frequently override the associated limitations.

Printing Text at Any Angle

Using only the PCL printer language, the PCL 5 LaserdJet
printers can print text in four directions: 0, 90, 180, and 270
degrees. Using the HP-GL/2 DI (Absolute Direction) or DR
(Relative Direction) commands, the printer can print any
scalable Laserdet printer font at practically any angle (in 1-
degree increments).

Please refer to the PCL 5 Printer Language Technical Refer-
ence Manual for a complete description of the DI and DR
commands and their options.

Vector Graphics 10-15

Example:
Rotating Fonts at
Any Angle

10-16 Vector Graphics

Below is a simple example showing the words “Laserdet
Printer” rotated at a 30-degree angle using the Univers
typeface. This effect can be done using any LaserdJet printer
scalable font.

EE Reset the printer.

Ec%1B Enter HP-GL/2 mode at the current
PCL position.

IN; Send the HP-GL/2 initialize com-

mand to set the HP-GL/2 environ-
ment to a known state. (The default
HP-GL/2 environment is discussed
in the PCL 5 Printer Language Tech-
nical Reference Manual.)

SC@,100,0,100; Use the scale command (SC) to es-
tablish a user unit coordinate sys-
tem so that the units that describe
the picture frame area extend from
0,0 to 100,100. This command al-
lows you to describe the picture
frame in units that you like to work
with, instead of absolute or plotter
units.

SP1;PA2,0; Select pen (SP). Establish absolute
plotting (PA) and move the pen to
absolute position 0,0.

DT-~,1;

PU50,50;

DI.87,.5;

LO12;

SD1,21,2,1,4,25,5,
1,6,0,7,4148;

SS;

LBLaserdJet Printer~;

Ec0A

EcE

Define the ~ character as a label ter-
minator. Note that the comma in
the command is necessary if the 1 is
included.

Send the pen up command to move
the pen to the middle of the page
(50,50).

Use the absolute direction command
(DI) to set the text angle to 30-de-
grees (.87 is the cosine and .5 is the
sine of a 30-degree angle).

Set the label origin (LO) to position
12.

Use the standard font definition
command (SD) to select the ASCII,
25-point, italic, Univers font.

Send the select standard font com-
mand (SS) to select the font just des-
ignated with the SD command; this
font will be used for subsequent la-
beling.

Print the “LaserdJet Printer” text us-
ing the Label (LB) command. Note
that this is the last HP-GL/2 com-
mand before exiting HP-GL/2 mode;
as demonstrated here, the last HP-
GL/2 command must be followed by
a semicolon.

Enter PCL mode at the cursor posi-
tion that was in effect when the HP-
GL/2 mode was entered.

Send the reset command to eject a
page and reset the printer to the
user default environment.

Vector Graphics 10-17

10-18 Vector Graphics

Anisotropically Scaled Fonts

The PCL 5 Laserdet printers have the ability to anisotropi-
cally scale fonts, which means they can be scaled dispropor-
tionately. To put it another way, they can be scaled so that
their size increases a different amount in the X direction
than in the Y direction.

PCL 5 printers can anisotropically scale fonts in two ways.
The first method is the most straightforward and utilizes
the relative character size (SR) or absolute character size
(SI) commands. Both commands scale fonts, but there is a
reason for choosing one command over the other, depending
on how the image will be used. The SR command allows the
font to be further scaled in the event that the picture frame
with which it is associated is enlarged or reduced. The Sl
command scales the font an absolute amount (in centime-
ters) and will not allow the fonts to change size along with
the picture frame.

The second method of anisotropically scaling fonts was al-
luded to in the explanation of the first method: allowing the
fonts to scale according to changes that are made in the size
of the HP-GL/2 picture frame. When this method is used,
the printer applies the picture frame scaling factor to the
font. As mentioned, this is done in conjunction with the SR
command. (See the Creating a Page-Size Independent Plot
discussion earlier in this chapter.)

Figure 10-5 shows the use of the SI and SR commands for
anisotropically scaling fonts. The PCL Picture Frame was
defined as 4 by 4.75 inches and the SI command was used
to print the text on the top half of the rectangle. Since the
text on the top was scaled absolutely (using the SI1,.5 com-
mand), the character size is approximately 1 cm x .5 cm. On
the other hand, since the text on the bottom was scaled rela-
tively, in order to scale it to a comparable size, the com-
mand parameters had to be much larger (the SR9,4.5
command was used). It is interesting to note that both sam-
ples were scaled from a 10-point CG Times font.

CCF PV Zrrzes
Sccrledcd zo
Z >x .5 crrz
Oszre > ST
Correrrecrrec?

CG Tirrnzes
Scaled
Osirzg SR
Correrrecerad

Figure 10-5. Anisotropic Scaling Using Sl and SR

Vector Graphics 10-19

10-20 Vector Graphics

Figure 10-6 shows the effect that changing the PCL picture
frame size has when using the SI and SR commands. The
same file that was used to print Figure 10-5 was used to
print the sample in Figure 10-6, but the PCL picture frame
size was reduced to 2 x 2.375 inches. Notice that the text
that is scaled to an absolute size gets clipped at the picture
frame boundaries while the relatively scaled text adjusts to
fit the new picture frame.

CG7I<—

Relative Absolute
scaling (SR) S iy & A l «A scaling (SI)
allows the text doesn’t allow
and frame «£ automatic
border to be "Z X -« = font scaling

scaled to fit - with a change
the new CG Tirnes in picture
picture frame. Scaled frame size.
. Usirnng SR
Corrzrrzarad

Figure 10-6. Picture Frame Size Changes and Scaling

For your further study, the source and executable code for a
similar SI/SR command comparison is contained on a disk
supplied with this manual. (SISRSAMP.EXE is the file-
name). In addition to that file, many other HP-GL/2 exam-
ples are contained on the disk. See Appendix B for a look at
the other examples that are included.

The Print Model

Contents

The Print Model—Filling With Patterns 11-1
How the Print Model Works 11-3
Using Rectangular Area Fill 11-5
Patterning Other Images. 11-7

Using the Print Model Commands............ 11-7

User-Defined Patterns 11-13

The Print Model —
Filling Images,
Rectangles, and
Fonts With Patterns

Note l'a

The Print Model defines how images, rectangles and fonts
can be filled with shading or patterns. Instead of offering
your Laserdet customers only black type, your software ap-
plication can offer reverse type, or type filled with patterns
or shades of gray. Your software can also allow users to fill
raster images with shades or patterns, or overlay images on
top of each other to create special effects.

Using the Print Model, the “1” bits of raster data can be
printed using a selected pattern type, including shading,
HP-defined patterns, and user-defined patterns. Transpar-
ency modes allow the “0” bits of the source image or pattern
data to be treated as transparent or opaque, providing flexi-
bility in making composite images.

In PCL mode, only the LaserdJet IITP and LaserdJet 4 print-
ers allow you to fill areas with user-defined patterns.

In HP-GL/2 mode, the Transparency Mode (TR) command
also offers Print Model capabilities. For all PCL 5 printers,
you can create your own patterns for filling images using
the HP-GL/2 Raster Fill Definition (RF) command.

The Print Model employs the following terms to describe its
operation:

* Pattern

* Source Image

* Destination Image

* Source Transparency Mode

» Pattern Transparency Mode

Each term is described below and illustrated in Figure 11-1:

The pattern is the design or arrangement of pixels that is
used to fill images using the Print Model. The “1” bits of the
pattern represent black pixels and the “0” bits represent
white pixels. The transparency modes affect how the

The Print Model 11-1

11-2 The Print Model

pattern affects the printed image. The white areas of the
pattern are visible if the pattern transparency mode is set
to 1 (opaque); the white areas are not visible if the pattern
transparency mode is set to 0 (transparent).

The source image is the image that is to be filled with a
shade or pattern. A source image acts as a “stencil” or
“mask” whose “1” bits define the area where the pattern will
be allowed to be visible on the page. The white areas of the
source image are visible if the source transparency mode is
set to 1 (opaque), but not if set to 0 (transparent).

The destination image is the area on the page where the
pattern/source image combination will be placed. In other
words, the destination image is the area of the paper that
will be affected by the pattern and source image, and in-
cludes any images placed through previous operations. For
example, if you placed three images on top of each other
and then tried to print a shaded font on top of the images,
the combination of the first three images would be consid-
ered the destination image.

The source transparency mode controls whether the white
pixels of the source image are visible on the final image.
When the source transparency mode is set to 0 (transpar-
ent), the white pixels of the source image have no effect on
the destination image. When the mode is set to 1 (opaque),
the white pixels of the source image are transferred to the
destination.

The pattern transparency mode controls the effect of the pat-
tern’s white pixels on the printed image. When the pattern
transparency mode is set to O (transparent), the white pix-
els are not visible on the printed image. When it is set to 1
(opaque), the white pixels are visible.

Figure 11-1 illustrates Print Model operation using a gray
shade as the pattern, a character as the source image, and a
black background as the destination. Notice that when the
source tranparency mode is set to 1 (opaque), the white
areas of the entire character cell are visible.

Character
Cell

Pattern Source Destination
Image Image

p
S

P = Pattern Transparency Mode S = Source Transparency Mode

0 P
0 S

1 P

0 P=1
0 s =

1 S =1

Figure 11-1. Varying the Transparency Mode Values

How the Print
Model Works

The operation of the Print Model can be compared to paint-
ing, where the images are “painted” with white paint onto
the paper, or destination. The black pixels of the source im-
age describe the areas where the white paint may be ap-
plied to the destination. (Figure 11-1 illustrates this—when
the pattern transparency mode is set to 1 (opaque), the
white pixels of the pattern are visible in the letter A.)

The white areas of the source image are visible if the source
transparency mode is set to “opaque”. If the source transpar-
ency mode is set to “transparent”, you will not see the white
areas of the source in the printed image.

The Print Model 11-3

Similar to the way the source transparency mode operates,
the pattern transparency mode affects whether the white
portions of the pattern are visible on the final image. When
the pattern transparency mode is set to 0 (transparent), the
white areas of the pattern are not visible on the destination
image. When it is set to 1 (opaque), the white areas of the
pattern are applied directly to the destination image.

The image below uses a raster graphic image of a maple
leaf as the source image. In this case, the source transpar-
ency mode is set to 0 (transparent) and the pattern trans-
parency mode is set to 1 (opaque).

Pattern + Source Image + Destination Image === Resulting Image

190005050
0%e%% Y

tetele
XK
RN

2
3018
2

>

22230 X
) 08
200000 00
XX

X

%

5

%

%

)0

%

.
Note "ﬂ To get a better idea of how the source and pattern trans-
parency modes affect the final printed image, the PCL 5
Printer Language Technical Reference Manual shows im-
ages representing all the possible combinations of these

modes.

The operation of the Print Model is more easily understood
with the help of a few examples. To help you use the Print
Model in your software applications, the examples in this
section explain many of the effects you can produce with

fonts and images.

11-4 The Print Model

Using Rectangular
Area Fill

Example:

Rectangular Area Fill
and the Pattern Trans-
parency Mode

Filling rectangular areas (or rules) with shading, hatch pat-
terns, or user-defined patterns (Laserdet IIIP/4 only) is ac-
complished using a few simple commands, generally in the
following order:

* Move the cursor to the position that will be the upper
left corner and the starting point of the rectangle.

* Set the pattern transparency mode, usually to opaque.
(The source transparency mode has no effect on the
rectangular area since the Print Model recognizes the
rectangular source image as solid black [no white pixels].)

» Specify the size of the rectangle to be filled using the
horizontal and vertical rectangle size commands.

e Fill the rectangle with the desired pattern or shade
using the fill rectangular area command.

The following example illustrates the way to print filled rec-
tangular areas.

This example shows a way of filling rectangular areas
(rules) with patterns. The example also demonstrates the ef-
fect of the pattern transparency mode on the resulting im-
age. The sample on the top was produced in exactly the
same way as the one on the bottom, with the exception of
one command; the one on the top was printed with the pat-
tern transparency mode set to opaque (1) while the one on
the bottom was printed with the pattern transparency mode
set to transparent (0).

The Print Model 11-5

11-6 The Print Model

EcE
Ec*p300x300Y

Ec*c600al50bdP

Ec*p-50x+50Y

Ec*v10

Ec*cdG

Ec*c700ab0B

Ec*c3P

Reset the printer

Move the starting cursor position
(CAP) one inch to the right of the
left-most printable position and one
inch below the default top margin
(which is one-half inch below the top
of the physical page).

Set the horizontal rectangle size to
600 PCL Units, and the vertical rec-
tangle size to 150 PCL Units. Fill
the rectangular area with solid
black (Ec*cdP).

Position the cursor to print the pat-
tern-filled rectangle by moving the
cursor position 50 PCL Units to the
left and 50 PCL Units beneath the
current cursor position. (The cursor
position before this command is at
the top left corner of the black rule.)

Set the pattern transparency mode
to opaque. This is done so that the
white areas of the cross-hatch pat-
tern are visible on top of the black
rule that was just printed (the desti-
nation). In the sample on the bot-
tom, this command was set to
transparent (the default).

Set the pattern ID number to pat-
tern number 4.

Set the horizontal rectangle size to
700 PCL Units, and the vertical size
to 50 PCL Units.

Fill the rectangular area with an
HP-defined pattern.

Patterning Other
Images

Using the Print
Model Commands

The LaserdJet printer’s capability to fill images with shades
and patterns provides an easy way to print special type and
graphic effects. There are extensive possibilities for vari-
ation including, but not limited to:

Gray-shaded images on white, black, shaded, or
patterned backgrounds

Shaded, patterned or white type on black, shaded or
white backgrounds

Combinations of shaded images on top of each other

Type with shaded portions or type filled with patterns

In general, the sequence of commands when using the Print
Model is as follows:

Move the cursor to the desired starting position (keep in
mind that the cursor position is different for text
compared to graphics).

Set the pattern transparency (Ec*v#0) and source
transparency modes (Ec*v#N) to the desired settings.

Select a gray-shading percentage or choose an
HP-defined pattern (Ec*c#G).

Select a pattern type (Ec*v#T) or use the current pattern
(solid black if no pattern has been specified). (Since the
transparency mode and pattern type command have the
same first three characters (Ec*v), the commands can be
linked together if desired [for example, Ec*v10dn2V]).

Send the source image (raster, text, or rules) to the
printer.

Reset the pattern ID to black so any text or images that
follow are printed black unless otherwise specified.

The following examples demonstrate the use of the Print
Model to fill raster images and fonts with shades and pat-
terns. Use these examples as a guideline for programming
your software applications.

The Print Model 11-7

Example: This example uses a raster image of a mountain range to
Pattern-Filled Raster demonstrate filling an image with patterns. The image on
Graphics the left is the original raster image, the one in the middle
was created using the commands listed below, and the im-
age on the right was created the same way using a cross-
hatch pattern instead of a shading pattern.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Ec*p450x450Y Move the cursor 450 dots to the
right of the left-most printable spot
on the page and 450 dots below the
top margin.

Ec*vIn10 Set the source transparency mode to
transparent and the pattern trans-
parency mode to opaque. (In this ex-
ample, this command is not
necessary because the background
[destination] is blank; it is included
for instructional purposes because
in actual applications it is usually
desired if the image overlaps some-
thing else.)

Ec*c30G Set the pattern area fill ID to 30 (for
30% gray).

Ec*v2T Select the current pattern to an HP-
defined shading pattern.

Ec*b#Wdata... Send the raster data to print the
image.

Ec*vOT Set the current pattern type to solid

black. This command is sent so that
all succeeding images and text will
print black instead of pattern-filled.

11-8 The Print Model

Example: This example prints a pattern-filled raster image on top of a
Pattern-Filled Raster filled rectangular area (rule). The image was printed using

Graphics on a Black the following commands:
Destination

Ec*pdx@Y Position the cursor at position 0,0.

Ec*c200a200b0P Draw a 200-dot by 200-dot rectangu-
lar area with solid black fill.

Ec*p65x45Y Move the cursor for placing the
graphic image (65 dots to the right
and 45 dots down from the 0,0
position).

Ec*vIn10 Set the source transparency mode to
transparent; this is necessary to
keep the white areas surrounding
the raster image from showing on
the destination image. Set the pat-
tern transparency mode to opaque;
this is necessary to allow white ar-
eas of the pattern to show against
the black background.

Ec*c3G Set the pattern area fill ID to 3.
This command could indicate either
a 3% gray shade pattern or the HP-
defined cross-hatch pattern number
3; the following command notifies
the printer that the cross-hatch pat-
tern has been selected instead of a
gray-shade pattern.

Ec*v3T Set the current pattern type to an
HP-defined cross-hatch pattern.

Ec*r1Atc*b9Wdata... Send the raster data.

The Print Model 11-9

Ec*vOT

Reset the pattern ID to print black
so that subsequent printing will be
black instead of pattern-filled.

Example: The following example demonstrates printing reverse and
Reverse and pattern-filled type on top of a filled rectangular area.

Pattern-Filled Type

Ec*p300x300Y

Ec*c756a225b0P

Ec*viin10

Ec*v1T

Ec(@U
Ec(s1p4@v1s3b4101T

11-10 The Print Model

Move the cursor one inch (300 dots)
to the right of the left-most print-
able position and one inch down
from the top margin.

Specify a rectangular area (rule)
that is 756 dots wide by 225 dots
high and fill the rule with solid
black.

Set the source transparency mode to
transparent and the pattern trans-
parency mode to opaque.

Set the pattern type to solid white
for printing the word “Soft”.

Select the ASCII symbol set.

Select a bold, italic, 40-point CG
Times font. The printer automat-
ically scales the resident typeface to
40 points. (A downloaded bitmapped
font would also work in this exam-
ple, but it would have to be created
and downloaded to the printer be-
fore selecting it.)

Example:
Pattern-Filled Type

Ec*p+160y+90X

“Soft”
Ec*c3G
Ec*v3T

“ware”

Ec*vOT

Move the cursor position 160 dots
down and 90 dots to the right of the
current position (which is the upper
left corner of the black rectangle).
This relative cursor move centers
the word within the black rectangle.

Send the first four letters of text.
Set the pattern area fill ID to 3.

Set the current pattern type to 3
(HP-defined cross-hatch pattern).

Send the last four letters of text.

Set the pattern type back to black to
“turn off” the printing of pattern-
filled images.

This example prints pattern-filled type:

asevietLaserfet

6" p30Px300Y
Ec*v@n10

Ec*c6G
Ec*v3T

Ec(dU
Ec(s1p4@v1s3b4101T

“LaserdJet”
Ec*vdT

“LaserdJet”

Move the cursor to desired position.

Set the source transparency mode to
transparent and the pattern trans-
parency mode to opaque.

Set the pattern ID to pattern 6.

Set the pattern type to 3 (HP-de-
fined cross-hatch pattern).

Select the ASCII symbol set

Select a bold, italic, 40-point CG
Times font.

Send text for the word “LaserdJet”.
Set the pattern type to solid black.

Send text for the second “Laserdet”.

The Print Model 11-11

Note l'a

Example:
Drop-Shadow
Effects Using the
Print Model

11-12 The Print Model

If the source transparency mode is set to opaque, white ar-
eas of the character cells that overlap each other erase part
of the adjacent characters. The pattern transparency mode
is set to opaque so that white areas of the characters print
correctly if they happen to overlap any non-white areas.

This example builds on the previous example. In this case,
the black “Laserdet” is printed first and then the pattern-
filled word is moved so that it overlaps the first word with a
slight offset to produce a drop-shadow effect.

6" p30Px300Y
Ec(JU
Ec(s1p4@v1s3b4101T

“LaserdJet”

Ectp-502x-TY

Move the cursor to desired position.
Select the ASCII symbol set

Select the bold, italic, 40-point CG
Times font.

Send text for the black word that is
used for the drop shadow.

Using a relative cursor move com-
mand, move the cursor 502 dots to
the left and 7 dots up. This places
the baseline of the next word 7 dots
higher and slightly to the left of the
first word. (In a software applica-
tion, the cursor position could be
pushed before printing the first
word (or phrase) and then popped af-
ter printing; then the cursor could
be positioned according to the de-
gree of offset requested by the user.
For example, the commands
Ec&fISLaserdettc &f1SEc*p-7Tx-7Y
would offset the cursor by 7 dots
above and to the left of where the

first word was started—without re-
quiring any calculating.)

Ec*vn10 Set the source transparency mode to
transparent and the pattern trans-
parency mode to opaque.

Ec*c6G Set the pattern ID to 6.

Ec*v3T Set the pattern type to 3 (HP-de-
fined cross-hatch pattern).

Laserdet Send text for the cross-hatched
word.

Ec*vOT Reset the pattern type to solid black.

User-Defined
Patterns

The HP LaserdJet ITIP and Laserdet 4 printers allow you to
fill type and images with user-defined patterns. These pat-
terns consist of a binary raster image which is downloaded
to the printer using the user-defined pattern command.
Once downloaded, the pattern can be used to fill images—
similar to how the HP-defined patterns are used.

The basic scenario for using user-defined patterns is:

* Assign an ID number to the pattern to be downloaded
(Ec*c#Q)

» Set the pattern reference point to the desired position
(Ec*p#R)

» Specify the pattern to be permanent or temporary
(Bc*c#Q)

* Download the user-defined pattern using the
Ec*c#W[header bytes] [pattern data] command.

Once the pattern is downloaded, it can be used the same
way as one of the HP-defined patterns. The commands
listed above are discussed in detail in the PCL 5 Compari-
son Guide. The example on the following page shows how
the user-defined patterns can be used.

The Print Model 11-13

Example: This example shows the creation and use of a star-shaped
User-Defined user-defined pattern. User-defined patterns in the PCL
Patterns mode are only available on the Laserdet IIIP and LaserJet
4 printers, however the other PCL 5 printers have this
(LaserJet IlIP/4 only) .. ability using the HP-GL/2 RF (Raster Fill Definition)

command.

N e

£ %2 %
A AKARS AEAO om0 KR kS
WARA, O ok oAy RARAA AT Kk
WAAK, oAk ok okd kk o ko, P
LUK ok hhS kA CAAA k
N KA AS KT oAd AA SRAS L
o A okd Ak oA kA A Ay KA
ko, P A KA A Ao b Ok

The raster data for the star pattern is shown below in
binary and hexadecimal format:

1) 00000000 00010000 00000000 (00 10 00)
2) 00000000 00010000 00000000 (00 10 00)

3) 00000000 00111000 00000000 (00 38 00)

4) 00000000 00111000 00000000 (00 38 00)

5) 00000000 01111100 00000000 (00 7C 00)
6) 00000000 01111100 00000000 (00 7C 00)
7) 00000000 11111110 00000000 (00 FE 00)
8) 00000000 11111110 00000000 (00 FE 00)
9) 111111211 12111111 11111110 (FF FF FE)
10) 0011111111111111 11111000 (3F FF F8)
11) 0001111111111111 11110000 (AF FF FO)
12) 00000111 11111111 11000000 (07 FF CO)
13) 00000011 11111111 10000000 (03 FF 80)
14) 00000111 11111111 11000000 (07 FF CO)
15) 00001111 11111111 11100000 (OF FF EO)
16) 00011111 11000111 11110000 (AF C7 FO)
17) 00011111 00000001 11110000 (AF 01 FO)
18) 00111100 00000000 01111000 (3C 00 78)
19) 00111000 00000000 00111000 (38 00 o0C)
20) 01100000 00000000 00001100 (60 00 O0C)
21) 10000000 00000000 00000010 (80 00 02)

The commands on the following page were used to print the
“Stars!” image above.

11-14 The Print Model

Ec*p300x600Y

Ec*chG

Ec*pdR

Ec*c4Q

Ec*c71W[header bytes]
[pattern data]

Ec*viin10

Ec*chbG

Ec*v4T

Ec(@U
Ec(s1p72v¥s3b4141T

Stars!

Ec*vOT

Move cursor position to the point de-
sired as the starting position.

Assign a pattern ID number of 5 to
the pattern to be created.

Set the pattern reference point to
the current cursor position and en-
able rotation of the pattern with the
print direction.

Make the pattern temporary.

Send the user-defined pattern com-
mand. Specify 71 bytes for the pat-
tern, 8 header bytes (00 00 01 00 00
15 00 18—Hex) plus 63 pattern data
bytes. (This command, including the
header bytes, is discussed

in detail in the PCL 5 Printer Lan-
guage Technical Reference Manual.)

Set the source transparency mode to
transparent and the pattern trans-
parency mode to opaque.

Set the pattern ID to pattern num-
ber 5 (the pattern just defined).

Set the pattern type to 4 (user-de-
fined).

Select a 72-point CG Times font.

Type the word “Stars!” to be filled
with the user-defined pattern.

Set the pattern type to black so that
any succeeding text or images won’t
be filled with the pattern.

The Print Model 11-15

Using Macros

Contents

Introduction 12-1
Suggestions For Using Macros............... 12-1
Macro Cartridges and Macro SIMMs. 12-2

Creating Macros.ccouiiiiiiinnennn.. 12-2

Using Macroscvviiiii e 12-2

General Macro Management. 12-4

HP-GL/2 in the Macro Environment. 12-6

Summary of Rules Concerning Macros. 12-6

Introduction

Suggestions For
Using Macros

Note l'a

Macros provide a means of consolidating a large amount of
printer commands and print data into one command, so
that they can be downloaded to the printer once and then
used a number of times. Macros can significantly increase
performance and decrease memory requirements, especially
if a particular graphic image or form is used repetitively
within an application. This chapter covers some of the
guidelines for using macros and includes examples to dem-
onstrate their use.

Since macros can be downloaded once and then used repeat-
edly, they are useful when repeating a large group of com-
mands and data more than once, or a small group of
commands and data several times. For example, if you cre-
ate a small logo for printing on every page of a report, using
a macro overlay to print the logo is an ideal solution. You
would download the macro once and enable automatic over-
lay, causing the logo to automatically print on every page of
the document. Likewise, if you create a large graphic image
that will be printed more than once, using a macro saves
considerable download time and printer memory, even if it
is only printed twice.

The Laserdet 4 printer is the only PCL 5 printer that allows,
HP-GL/2 commands to be executed from within macros.

A particularly good use of macros is for printing forms for
businesses that use the same forms day after day. The
forms can be downloaded as macros that can be quickly
printed and simultaneously filled in with data. Complex
forms that may take awhile to download the first time can
be printed much quicker after they are downloaded as a
macro.

Using Macros 12-1

Macro Cartridges
and Macro SIMMs

The PCL 5 printers support macro cartridges that plug into
the printer’s standard font cartridge slots. The LaserdJet 4
printer also supports SIMM-based macros. For more infor-
mation about macro cartridges and SIMMs, contact the HP
Boise Division Product Specials Group at (208) 323-3684.

Creating Macros

The create a macro, do the following:
* Designate a macro ID number.
* Send the start macro definition command (Ec&fJX).

* Send the escape sequences, control codes and data that
comprise what you want to print with the macro.

* Send the stop macro definition command (Ec&f1X).

Using Macros

12-2 Using Macros

Once a macro has been created, it can either be called,
executed, or overlaid. The difference between the macro
call and macro execute commands is how the print environ-
ment is affected following the macro implementation.

If a macro is called, it operates using the current modified
print environment. Changes made to feature settings dur-
ing a macro call are recorded in the modified print environ-
ment; however, these changes are not retained upon
completion of the macro call. After the macro call, the modi-
fied print environment that existed prior to the macro call
is restored; however, the cursor position is not stored. To
avoid losing the cursor position, it can be saved using the
push/pop cursor position command as demonstrated in the
next example.

If a macro is executed, it operates using the current modi-
fied print environment. Changes made to feature settings
during macro execution are recorded in the modified print
environment; these changes are retained upon completion
of the macro execution.

Example:

Storing the Cursor
Position Before
Macro Use

If a macro is overlaid, the automatic overlay is the final op-
eration each time a page is printed. Before the macro is exe-
cuted, the current modified print environment is saved and
replaced by the overlay environment. Upon completion of
the macro overlay, the modified print environment that ex-
isted prior to the macro overlay is restored.

This example demonstrates the use of the push/pop cursor
command to store the cursor location following a macro call.
The cursor position is stored prior to calling the macro and
is then restored following the macro call.

EE

Ec&l11X
Ec&100
Ec&f25Y

Ec& X
PRINT DATA
Ec&f1x10X

PRINT DATA

Ec&fS

Ec&f25x3X

Ec&f1S

PRINT DATA
EcE

Reset the printer.

Set the number of copies to 1.
Select portrait orientation.
Specify a macro ID number of 25.
Start the macro definition.

Send the contents of the macro.

Stop the macro definition and make
the macro permanent.

Print the data that precedes the
spot in the document where the
macro will be placed.

Push (store) the current cursor posi-
tion before calling the macro.

Call macro number 25. This command
causes the macro action to occur.

Pop (recall) the cursor position. This
command moves the cursor to the
position it was in prior to calling the
macro. (The macro could have
caused the cursor to move.)

Print the remaining part of the job.

Printer reset at end of print job.

Using Macros 12-3

General Macro Macros are managed in much the same way as fonts are

Management managed. Using the macro control command as indicated in
the PCL 5 Printer Language Technical Reference Manual,
macros can be assigned an ID number, made permanent or
temporary, and deleted.

The decision to make a macro permanent or temporary de-
pends on the number of users using the printer and what
their applications are. A macro that will be used many
times throughout a print job but would never be used by
other jobs would best be created as a temporary macro.
Since temporary macros are erased with a printer reset, the
next print job sending a reset would clear the macro from
memory, freeing space for other data.

Conversely, macros that will be used by many users or by
many jobs should be created as permanent macros so that
they can be easily accessed without downloading them re-

peatedly.
Example: This example automatically overlays a form on every page
Automatic Forms of a document and demonstrates good macro management

techniques. This simple form consists of a shaded rule with
a black border and a fictitious company name. The black
border around the shaded area was easily made using the
Print Model by specifying a 1-inch black rule with a slightly
smaller 10% gray rule on top of it, placed so that the black
rule creates a border.

Overlay

Acme Laser Printers, Inc.

12-4 Using Macros

(In this example, it is assumed that the proper job setup
and page setup commands precede the commands shown.)

Ec&f37ydX

Ec*p75x75Y

Ec*c2240a300b7P

Ec*p+10x+10Y

Ec*v10

Ec*c10G

Ec*c2220a280b2P

Ec*p150x200Y

Ec(8U
Ec(s1p18v3b4148T

Acme Laser
Printers, Inc.

Ec&f1X
Ec&f37ylox4X

Start the definition of a macro with
an ID number of 37.

Designate the starting cursor posi-
tion.

Specify a black rule that is 2240
PCL Units wide by 300 PCL Units
high (7.46 by 1 inch).

Move the cursor 10 PCL Units to
the right and 10 PCL Units down
from the cursor position where the
black rule was started.

Set the pattern transparency mode
to opaque so the white areas of the
following rule are visible on top of
the black rule.

Specify a 10% shading pattern for
the following rule.

Print a shaded rule that is 20 PCL
Units narrower and shorter than
the black rule.

Move the cursor position for the be-
ginning of text.

Select the Roman-8 symbol set.
Select an 18-point bold Univers font.
Send text for the logo.

Stop Macro definition.

Make the last-specified macro ID
number (# 37) permanent and en-
able it for automatic overlay.

Using Macros 12-5

PRINT TEXT Position the cursor and send text to
be printed on the page.

CR-FF Send a carriage return and form
feed to eject the current page.

Ec&f37y8X At the end of the print job, delete
macro number 37 to free associated
memory.

HP-GL/2 in the
Macro Environment

For all printers except the Laserdet 4, HP-GL/2 is not sup-
ported in the macro environment. The command to enter
the HP-GL/2 mode (Ec%#B) is ignored by the other PCL 5
printers when used within a macro.

Summary of Rules
Concerning Macros

12-6 Using Macros

Here is a summary of the rules concerning macros:

* When using downloaded and cartridge macros, the
printer uses the following priority system: downloaded
macros take priority over the left cartridge macros,
which take priority over the right cartridge macros.

» Up to 32,767 macros can be downloaded to the PCL 5
Laserdet printers, which means the number is usually
only limited by the amount of available printer memory.

e Other than the call or execute commands, no macro
control operations may occur within a macro.

* A printer reset is not allowed in a macro.

* Unlike the Laserdet series II printer, font management
commands are allowed in macros; that is, fonts may be
downloaded, deleted, or made permanent in a macro.

e Macro execution can be nested two deep (i.e., a macro
may execute a macro that executes another macro).

* The macro enabled for auto macro overlay is executed on
each page until the macro is disabled or deleted, a reset
occurs (EcE or control panel), or the page length, page
size or orientation is changed.

+ HP-GL/2 commands may only be used within macros
that will be sent to the LaserdJet 4 printer.

» Display functions mode is not allowed in a macro.

Using Macros 12-7

Tips for Efficient Programming 13

Contents

Introduction. L 13-1
General Tips 13-1
Combining Escape Sequences 13-1
dJobSetup......... 13-2
For Non-PJL Laserdet Printers. 13-2
For PJL LaserdJet Printers. 13-2
PageSetup 13-4
General Print Job Initialization. 13-5
Non-PJLExample 13-7
Laserdet IIISi Example 13-7
LaserJet4 Example........................ 13-8
UsingFonts............. i, 13-8
Font Support............ 13-9
Raster Graphics 13-9
The Print Model 13-10
Vector Graphics. 13-11

Macros. ... 13-12

Introduction

As with most programming languages, the PCL printer lan-
guage sometimes offers more than one way to solve a par-
ticular programming problem. Some of these methods are
more efficient than others, and this chapter focuses on how
to provide the most efficient and effective way to approach
the use of specific features.

General Tips

Combining Escape
Sequences

To reduce the size of print files and help speed the printing
process, escape sequences can be combined. If two or more
escape sequences have the first three characters in common
(including the escape character), they can be combined into
one escape sequence. For example, the following two cursor
positioning commands, Ec*p300XEc*p330Y, may be combined
into one command, Ec*p300x300Y.

Although combining escape sequences only appears to save
a few characters, the difference may be tremendous when
considering an entire print job. For more information about
combining escape sequences, please refer to the Parameter-
ized Escape Sequences discussion in the PCL 5 Printer Lan-
guage Technical Reference Manual.

Programming Tips 13-1

Job Setup

For Non-PJL
LaserJet Printers

For PJL LaserJet
Printers

13-2 Programming Tips

Job setup involves sending commands to create the desired
state for your application. Job setup is different for non-PJL
printers than it is for PJL printers. Job setup for both non-
PJL and PJL printers is described below:

Sending the EcE (reset) command as the first command of
your job sets the printer to the user default environment,
providing a starting place from which to begin creating a de-
sired state.

Once the printer is reset, your software must consider how
the control panel settings may be configured. You can over-
ride the control panel settings as long as your software pro-
vides a way to set the same features (so that the customer
doesn’t get “locked out” from a control panel feature). (See
Chapter 2 for more information about job setup.)

Once the printer is reset and commands are sent to over-
ride the control panel, commands can be sent to set the
printer to the desired state. Remember, job setup com-
mands need only be sent at the beginning of the print job,
with one exception. Sending the reset command at the end
of each print job “cleans up” the printer for the succeeding
job. (For a good example of a job setup string, see the Gen-
eral Print Job Initialization discussion later in this chapter.)

For the Laserdet IIISi and Laserdet 4 printers, the job
setup procedure is basically the same as for non-PJL print-
ers, except the initial EcE reset must be preceded by a UEL
command (5¢%-12345X) and a PJLL ENTER LANGUAGE
command. The UEL command causes the printer to exit the
current printer language and to enter PJL mode. The PJL
ENTER LANGUAGE command explicitly selects a page
description language. In addition to placing these two com-
mands prior to the initial EcE, the EcE at the end of the job
should also be followed by the UEL command.

Note l'a

For example, the PCL commands and print data should be
encapsulated by PJL commands as follows:

Ec%-12345X@PJL <CR><LF>
@PJL ENTER LANGUAGE=PCL <CR><LF>
EcE<PCL commands and data>tcEEc%-12345X

Notice that there are no spaces after the X in the initial &c%-
12345X command, and that there is a line feed immediately
preceding the &E. The line feed characters are required to
terminate each PJL command.

LaserJet 4 Considerations

The Laserdet 4 printer allows you to use the PJL. SET com-
mand to set resolution enhancement (RET), page protec-
tion, and resolution to the desired values. The following
information should help you decide how to set each of these
three features:

* Resolution Enhancement—in most cases, RET
improves the quality of the printed image, so it should be
turned on unless there is a specific reason to turn it off.

* Resolution—the resolution can be set at either 300 or
600 dots per inch. Rendering fonts requires less internal
memory when the device resolution is 300 dpi than at
600 dpi. At the beginning of the job, resolution should
always be set to the resolution of any bitmapped
graphics that are part of the print job. For example,
bitmapped images generated at 300 dpi should be
printed with device resolution set to 300 dpi. Note that
when the resolution setting is changed, all downloaded
fonts and macros are erased from printer memory.

» Page Protection—page protection should not be turned
on unless it is needed, since it requires a large amount of
printer memory. It is, however, very useful for printing
complex pages and those pages containing vector
graphics. Applications can take advantage of the

Programming Tips 13-3

LaserdJet 4 printer’s status readback capability, only
turning page protection on if unsolicited status indicates
a print overrun error (error 21) has occurred. To
accomplish this, use the @PJL. USTATUS DEVICE = ON
command and check for a print overrun error (status
error code 30017). If print overrun occurs, resend the job
with page protection turned on so that the job prints
correctly the second time. As with changing the
resolution, changing page protection status erases all
downloaded fonts and macros from printer memory.

For the LaserdJet 4 printer, other PJL commands in addition
to the ones just mentioned may be used for such actions as
modifying the control panel display and setting printer de-
faults. For more detailed PJL information for

the LaserdJet 4 printer, see the PJL Technical Reference
Manual.

Page Setup

13-4 Programming Tips

Although it is possible to send page setup commands for
each page of data, it is not efficient to do so. After the first
page has been sent to the printer, send page setup com-
mands only when a change is necessary from the previous
page. For example, if a top margin is sent before the first
page of data, resending the top margin command isn’t neces-
sary on succeeding pages unless the user wants a different
top margin distance than the initial setting.

General Print Job Chapters 2 and 3 discuss in detail the proper job and page

Initialization setup commands. For quick reference, the following general
setup sequence is included here. Commands that are only
used for PJL printers are noted as such. As indicated below,
you may not be sending all of the commands at the begin-
ning of the print job because you don’t want to lock out fea-
tures from your users. However, the commands you do use
at the beginning of your print job should be sent in the or-
der listed below:

Ec%-12345X@PJL <CR><LF> (PJL PRINTERS ONLY) Send the UEL
command, followed immediately by
@PJL<CR><LF>to exit the current
printer language and enter PJL mode.
(The “@PJL” prefix must always
immediately follow the UEL command,
with no spaces in between the X and the
@. The “@PJL” may be followed by a
<CR><LF> (or just <LF>) or it may be
the prefix for the next PJL command,
such as: @PJL. ENTER LANGUAGE =
PCL<CR><LF>.)

@PJL SET RESOLUTION = # <CR><LF> (LASERJET 4 ONLY) Set the resolution
to match the resolution of any
bitmapped graphics in the print job.

@PJL SET PAGEPROTECT = # <CR><LF> (LASERJET 4 ONLY) Set page protect
off unless it is needed to process a
complex job.

@PJL SET RET = # <CR><LF> (LASERJET 4 ONLY) Leave resolution
enhancement on unless there is a good
reason to turn it off (such as the rare

case where an application prints better
with RET off).

@PJL ENTER LANGUAGE = # <CR><LF> (PJL PRINTERS ONLY) Use the
ENTER command to explicitly select a
printer language.

Programming Tips 13-5

EcE

Ec&l#X

Ec&l#S

Ec&l#H

Ec&I#A

Ec&l#0O

Ec&1#C
Ec&I#E
Ec&I#F
Ec&a#L

Ec(ID

Ec(s#p#h#vits#b#T

Reset the printer. For non-PJL printers, this is the first command in
the print job. For PJL printers, this command should immediately
follow the <LF> at the end of the PJLL. ENTER command.

Set the number of copies. This feature overrides the COPIES=
feature on the control panel, so only send this command if your
application allows the user to specify the number of copies.

Select simplex or duplex printing. This feature overrides the
DUPLEX= feature on the control panel, so only send this comand if
your application allows the user to select duplex printing. This
feature is not ignored on non-duplexing machines, and may result in
a conditional page eject.

Select a paper source. This command overrides the TRAY= and
MANUAL FEED= features on the control panel; only send this
command if your application allows the user to select a different
paper source or manual feed.

Specify the page size. This command overrides the PAPER= and
ENVELOPE= feature on the control panel

Specify the logical page orientation. This command overrides the
ORIENTATION-= feature on the control panel; only send this
command if your application allows the user to select an orientation.

Designate the line spacing value (VMI). This command overrides
the FORM= feature on the control panel

Set the top margin if you desire a different value than the default.

Set the text length to the desired number of lines (based on the
previously specified VMI command) if you want a text length other
than the default.

Set the left margin if the default is not desired.

Specify a primary symbol set. This feature overrides the control
panel’s SYM SET= feature

Specify a primary font. This feature overrides the control panel’s
FONT NUMBER-= feature; only set this feature if your application
allows font selection.

13-6 Programming Tips

Non-PJL Example

LaserJet llISi
Example

A sample non-PJL initialization string shown in the same
order as the commands on the previous page is:

EcEEc&l1x1s1h2afo8c6e54FEc&abLEc(PUE(s1pIvs3b4101T
This set of commands would reset the printer, specify 1

copy, specify simplex (1-sided) printing, specify the paper
tray as a paper source, choose letter-size paper, select por-
trait orientation, VMI=8 (6LPI), set top margin to one inch
(6 lines), select a 9-inch text length (54 lines), a 5-column
left margin, ASCII symbol set, and a proportional, 9-point,
upright, bold, CG Times font.

After receiving the above-listed commands, the printer
would be ready to receive PCL print data. After the print
data, the application would send the EcE command to com-
plete the job.

For the LaserdJet IIISi printer, the same job as the non-PJL
example above would be sent as follows:

Ec%-12345X@PJL <CR><LF>
@PJL ENTER LANGUAGE = PCL <CR><LF>
EcEEc&l1x1s1h2afo8c6e54FEc&abLEc(PUE(s1pIvs3b4101T

The commands listed above would set up the LaserdJet I1ISi
printer to accept PCL print data. After the PCL print data,
the following commands would be used to complete the job:

EcEEc%-12345X

Programming Tips 13-7

LaserJet 4 Example

For the LaserdJet 4 printer, the same job would be sent as
shown below. The example assumes that any graphics in
the job are 600 dpi, there is no need for page protection, and
that the user desires the RET setting to be medium.

Ec%-12345X@PJL <CR><LF>

@PJL SET RESOLUTION = 600 <CR><LF>

@PJL PAGEPROTECT = OFF <CR><LF>

@PJL RET = MEDIUM <CR><LF>

@PJL ENTER LANGUAGE = PCL <CR><LF>
EcEEc&l1x1s1h2ado8c6e54FEc&abLEc(PUE(s1pIvs3b4101T

The commands above would initialize a PCL job that is des-
tined for the LaserdJet 4 printer. After the PCL print data,
the following commands would be used to complete the job:

EcEEc%-12345X

Using Fonts

13-8 Programming Tips

For documents in which two fonts are used frequently, an ef-
ficient method exists that allows you to easily switch be-
tween the two fonts. Specifying one font as a primary font
and the other font as a secondary font allows you to alter-
nate between the fonts using the Shift In/Shift Out control
codes. (See the portion of Chapter 5 entitled Primary and
Secondary Fonts.) Using this method is much more efficient
than frequently transmitting the entire font select escape
sequence.

When downloading fonts, those with a large point size take
more time to download than smaller fonts. For situations
such as printing headlines, an effective time-saver is to
download only those characters that will be in the headline,
instead of the whole symbol set.

Font Support

As explained in Chapter 6, TFM integration allows your ap-
plication to be automatically compatible with all new HP
font products. All HP font customers receive AutoFont Sup-
port files with each font product they purchase. This disk
contains TFM files for all the fonts they have purchased. In-
tegrating AutoFont Support ensures that your customers
get instant font compatibility, requiring you to only write
one driver for each printer instead of one for each font prod-
uct. AutoFont Support provides all the font metric data that
your software needs to format a page and saves you time
and resources that would be spent writing drivers for each
font product. (See Chapter 6 for more information about
TFM support.)

To increase performance when reading TFM files, read only
those tags that are needed for your application.

Raster Graphics

Below are some general tips that should improve raster
graphics performance:

» Use one or more of the raster compression modes to
reduce the size of the print file and to reduce I/O transfer
time.

* Use the Y offset command to help compress raster data
even further.

* Do not use PCL positioning commands (other than the Y
offset) while in the raster graphics mode—they will have
the effect of an end raster graphics command.

» Use the raster height and raster width commands to
reduce the size of the resulting print file and the I/O
transfer time, especially when using the Print Model.

» For horizontal and vertical lines, use rectangular area
fill (rules) instead of raster graphics. Rules print more

Programming Tips 13-9

efficiently and occupy less memory than the equivalent
raster graphics image.

» With the use of adaptive compression (Laserdet I1IP/4
printers only), you can minimize the space required for
storing graphics and possibly reduce memory
requirements.

» Incorporating FASST is an easy way to support more
efficient raster graphics (see Appendix E).

The Print Model

13-10 Programming Tips

Borders around a page or a frame can be created by overlay-
ing a white rule centered over a slightly larger black rule,
with the difference between rule sizes creating the width of
the border (the pattern transparency mode is set to opaque).
Creating a border this way saves several bytes of data com-
pared to sending four separate rule commands and several
cursor positioning commands. (See the example in Chapter
12 entitled Automatic Forms Overlay for a demonstration of
this technique.)

Vector Graphics Printing performance can vary greatly depending on sev-
eral factors:

* Contrary to what one might expect, there is no
performance penalty involved in switching between the
PCL printer language and HP-GL/2 modes. This
switching can be performed over 600 times on a single
page without causing the printer to slow from eight
pages per minute.

e Horizontal and vertical lines are more efficient than any
other lines since the printer converts them to rules for
printing; rules print much more efficiently than the
equivalent image performed with raster graphics.

e The complexity of the image. The more complex the
image, the slower the performance.

e Use of the HP-GL/2 graphics commands. Making the
most efficient use of graphics commands increases
performance; for example, using the edge rectangle
commands (ER and EA) allows you to draw a rectangle
using only one coordinate pair instead of four.

e Use of the PE command. Use of the polyline encoded
(PE) instruction to send coordinates can increase I/0O
performance significantly.

e Line joins and ends. There are several types of HP-GL/2
line joins and line ends and they vary in their efficiency.
In general, the following join types can be paired with all
line ends without performance penalties: mitered,
mitered/beveled, triangular, and beveled. Of all the join
-r—=- types, a round join is the most efficient, while the
\:\ triangular join is the least efficient to process. The most
efficient join/end combination is the round join/butt end,
The Round Join/Butt End while t'h(.e leagt efficient couplini‘gr for: the round join is the
is the Most Efficient round join/triangular end combination. See Chapter 22 of
Join/End Combination the PCL 5 Printer Language Technical Reference Manual
for an illustration of all the types of line joins and ends,
and for the values used to select each type.

Programming Tips 13-11

A
Note l'a

Font manipulations within HP-GL/2 and complex HP-GL/2
vector graphics may cause print overruns (Error 21). Error
21 occurs when the printer cannot process data at the rate
required to keep pace with the physical speed of the page as
it moves through the printer. Before PCL 5, the PCL printer
language provided no remedy for an Error 21 condition
other than for the user to reduce the complexity of the de-
sired page.

Predicting just how complex a particular HP-GL/2 graphic
can be without causing an Error 21 is not an exact science.
Now, however, if the error occurs the user has a viable solu-
tion. By enabling the printer’s page protection feature from
the printer’s front panel, or in the case of the LaserJet 4
printer, using a PJL command, the entire page will format
without the potential for error 21. (The Laserdet 4 printer
allows page protection at 300 dpi without additional mem-
ory. Page protection at 600 dpi requires 4 Mb. All other PCL
5 printers require at least 1 Mb additional memory to en-
able page protection.)

Macros

13-12 Programming Tips

By their very nature, macros provide for efficient program-
ming because they provide access to a number of commands
using only one command (once the macro has been created).
Any raster graphic or sizable sequence of commands that is
used more than once in a document should be printed using
a macro. Refer to Chapter 12 for more information about
when to use macros.

Common Problems & Their Solutions 14

Contents

Introduction. i 14-1
Missing Characters/Graphics at Edges of the Page .. 14-1
Running Out of Memory (Error 20)............... 14-1
Print Overrun (Error21) 14-3
Reset (EcE) Deleting Temporary Fonts and Macros .. 14-3
PJL-Specific Problems 14-3
Reset (EcE) Causing Printing of Partial Pages 14-4
Clipped GraphicImages........................ 14-4

HP-GL/2 Images Not Printing Properly 14-5

Introduction

This chapter is not an exhaustive list of potential problems,
but it does indicate some of the more common problems
that programmers experience. If you have not already done
so, please read through these few pages to familiarize your-
self with these potential problems so that they can be
avoided. If you are already experiencing difficulty with any
of these situations, hopefully this will help you solve the
problem. Be sure to check the PCL 5 Printer Language Tech-
nical Reference Manual for related topics if you are still hav-
ing problems.

Missing Characters
or Graphics Along
the Edges of the
Page

Attempting to print too close to the edge of the page may
cause characters or graphics to extend into the unprintable
region, clipping them at the boundary.

For text, unexpected clipping can be prevented by calculat-
ing the page boundaries and then using font metric data to
be sure characters fall within the printable area. (See Chap-
ter 4 for examples demonstrating printing at the outer-most
limits of the page.)

Running Out of
Memory (Error 20)

With the standard printer memory, downloading too many
fonts, rasterizing a large bitmap character from a scalable
font, inefficient use of HP-GL/2 commands, or too large of a
raster graphics image can cause an error 20, meaning that
the printer requires more user memory to print a particular
job. Solutions to this problem include the following:

» Downloaded fonts and macros may be occupying a large
amount of user memory. If these are deleted, there may
be plenty of memory left to print the job successfully.
This solution may be a good one, although other users in

Common Problems 14-1

14-2 Common Problems

a multi-user workgroup may be adversely affected. See
the Memory Usage section in Chapter 2 for more
information.

Reduce the graphics resolution to reduce the memory
required to print the graphics image.

When using large fonts, send only the characters
necessary to print the job. For example, if the job
requires a 65-point headline, download only those
characters that are required in the headline. The job will
print faster and will require less user memory to print
successfully. (With scalable fonts, the universal
characters and limited sensitivity characters [such as “.
; , |7, Line Draw and Greek characters] are already in
the printer, so they won’t have to be downloaded. Note
also that for scalable fonts, all of the parts of compound
characters must be downloaded.)

For LaserdJet I11P/4 applications, use adaptive
compression to reduce the size of raster graphics so that
less memory is required.

Install additional user memory.

Whenever possible, use printer fonts and the highest
level of HP-GL/2 commands in your vector drawings.
Stroke-to-fill techniques are extremely inefficient for
both data transfer and user memory requirements.

Print Overrun
(Error 21)

In some situations, complex job formatting causes the
printer to respond with a print overrun (data saturation) er-
ror (Error 21). If the printer is a PCL 5 printer and has
enough memory installed, a page protection mode is accessi-
ble from the control panel (for the LaserdJet 4 printer, it can
be enabled using the PJL SET command). See the Memory
Usage section in Chapter 2 for more information on this fea-
ture. Note that changing the page protection setting recon-
figures printer memory, and in the process erases all
perishable data.

Reset (=E) Deleting
Temporary Fonts
and Macros

A printer reset clears all temporary fonts and macros from
memory. Turning the printer power off clears all down-
loaded fonts and macros (temporary and permanent). In
situations that use the same fonts repeatedly, fonts can be
downloaded as permanent so that printer resets will not
clear them from memory. See the PCL 5 Printer Language
Technical Reference Manual for information on temporary
and permanent fonts.

PJL-Specific
Problems

Listed below are some things to be aware of when using
PJL.

¢ The UEL command (Ec%-12345X) must always begin and
end a job destined for a PJL printer. The UEL command
at the beginning of the job must be immediately followed
by the @PJL command prefix. There can be no spaces or
other characters between the “X” in the UEL command
and the “@” in the PJL command prefix.

+ Each line of PJL code must end with a line feed
character (<LF>).

Common Problems 14-3

» Changing the language resolution or page protection
setting causes all perishable data to be lost, including
downloaded fonts and macros.

» After the @PJL. ENTER LANGUAGE = PCL <LF>
command is issued, PCL data must immediately follow
it, beginning with the &cE command.

Reset (=£) Causing
Printing of Partial
Pages

If the printer receives a reset after it receives printable
characters, the current page is ejected and a new page be-
gins to be formatted. This problem is avoided if the reset is
issued as the first and last command in a print job, but not
anywhere in-between.

Clipped Graphic
Images

14-4 Common Problems

With the Raster Graphics System, the size of the picture
boundaries is defined by the raster width and raster height
commands. Any portion of the image that would have ex-
tended beyond these boundaries is clipped. Unexpected clip-
ping can result when the raster height and raster width
commands are not set to the desired size.

In the HP-GL/2 mode, those images that are defined abso-
lutely (instead of relatively) will be clipped at the PCL pic-
ture frame boundaries. Solutions include increasing the
picture frame size or using relative commands so that the
image is automatically scaled to fit the picture frame.

HP-GL/2 Imag es Not If you are experiencing difficulty printing an HP-GL/2 im-
Printing Properly age, one of the following syntax items may be the cause:

e Whenever the HP-GL/2 mode is used, the last HP-GL/2
command before returning to PCL mode must be
terminated by a semicolon.

* When using the DT (Define Label Terminator) command,
a comma must be placed after the designated terminator
and before the mode parameter. For example, if you are
designating the circumflex (caret) as a terminator and
don’t want the label terminator printed, either of the
following commands are correct: DT*,1; or DT*;.

* A pen must always be selected using the SP command,
whether white (SPO) or black (SP1). Failure to select a
pen can cause unexpected results.

* When using multiple line widths in an HP-GL/2 drawing,
it is preferable to use one logical pen (SP1) and modify
the line widths with the PW command, rather than
specifying several logical pens at different line widths.
Using the SP1 and PW commands as mentioned ensures
that line widths will scale correctly.

Common Problems 14-5

LaserJet Printer Features and Compatibility A

Contents
Feature Support Table. A-1
Laserdet Compatibility Issues A-10
Memory and Performance A-10
Lossee/Lossless Compression. A-11
Floating CAP......... A-12
Video Interface and Expanded I/O............ A-14
ModularI/O........ i A-14

Miscellaneous Compatibility Issues........... A-14

Feature Support
Table

Note l'a

The table below compares the features of the different
printer models in the PCL 5 LaserdJet printer family. The
section following the matrix discusses some of the differ-
ences that affect compatibility between the PCL 5 LaserdJet
printers and the PCL 4 printers.

In the following table, “ns” indicates the feature is not sup-
ported and “YES” indicates it is supported. If the command
value field parameters are not listed, all parameters are
supported by all PCL 5 printers that support that command.

The value in parentheses in the “Command” column identi-
fies the parameter value for that particular selection. For
example, “A4 (26)” means that 26 is the value required to se-
lect A4 paper using the Page Size command (Ec&£26A).

PCL COMMANDS
Command Function Command LaserJet Printer Model
mw | wp | msi | wp | 4

JOB CONTROL
Universal Exit Language Ec%-12345X ns ns YES | ns YES
(UEL)
Reset EE YES | YES | YES | YES | YES
Number of Copies Ec&L#X YES | YES | YES | YES | YES
Simplex/Duplex Print Ec&L#S ns YES | YES | ns ns
Left (Long-Edge) Offset Ec&L#U YES | YES | YES | YES | YES
Registration
Top (Short-Edge) Offset Ec& L #7, YES | YES | YES | YES | YES
Registration
Unit of Measure Ec&u#B ns ns ns ns YES

Feature Support A-1

PCL COMMANDS
Command Function Command LaserJet Printer Model
w | wp | wmsi | wp | 4
PAGE CONTROL
Page Size Ec&L#A YES | YES | YES | YES | YES
Executive (1) YES | YES | YES | YES | YES
Letter (2) YES | YES | YES | YES | YES
Legal (3) YES | YES | YES | YES | YES
A4 (26) YES | YES | YES | YES | YES
Intl. B5 ns ns ns YES
Envelope (100)
Monarch YES | YES | YES | YES | YES
Envelope (80)
Com10 YES | YES | YES | YES | YES
Envelope (81)
Intl. DL YES | YES | YES | YES | YES
Envelope (90)
Intl. C5 Envelope (91)| YES | YES | ns YES | YES
Page Length Ec&L#P YES | YES | YES | YES | YES
Orientation Ec&L#0 YES | YES | YES | YES | YES
Page Side Selection Ec&a#G YES | YES | ns ns

A-2 Feature Support

PCL COMMANDS

Command Function Command LaserJet Printer Model
[l "D lHSi P 4

Paper Source Ec&L#H YES | YES | YES | YES | YES

Upper Tray (1) or YES | YES | YES | YES | YES

Standard Cassette

Manual Feed (2) YES | YES | YES | YES | YES

Manual Feed YES | YES | YES | YES | YES

Envelope (3)

Lower Tray (4) or ns YES | YES | YES | YES

Multipurpose Tray

Large Capacity ns ns ns ns YES

Paper Source (5)

Envelope Feeder (6) ns YES | YES | ns YES
Paper Destination Ec&L#G ns ns YES | ns ns
Print Direction Ec&a#P YES | YES | YES | YES | YES
Left Margin Ec&a#L YES | YES | YES | YES | YES
Right Margin Ec&a#M YES | YES | YES | YES | YES
Clear Horizontal Tab Ec9 YES | YES | YES | YES | YES
Top Margin Ec&L#E YES | YES | YES | YES | YES
Text Length Ec&L#F YES | YES | YES | YES | YES
Perforation Skip Ec&L#L YES | YES | YES | YES | YES
Horizontal Motion Index Ec&k#H YES | YES | YES | YES | YES
Vertical Motion Index Ec&L#C YES | YES | YES | YES | YES
Line Spacing Ec&L#D YES | YES | YES | YES | YES

Feature Support A-3

PCL COMMANDS

Command Function Command LaserJet Printer Model
w | wp | wmsi | wp | 4
CURSOR POSITIONING
Horizontal Position Ec&a#C YES | YES | YES | YES | YES
Ec&p#X YES | YES | YES | YES | YES
Ec&a#H YES | YES | YES | YES | YES
Vertical Position Ec&a#R YES | YES | YES | YES | YES
Ec&a#Y YES | YES | YES | YES | YES
Ec&a#V YES | YES | YES | YES | YES
Half Line Feed Ec= YES | YES | YES | YES | YES
Line Termination E&k#G YES | YES | YES | YES | YES
Push/Pop Position Ec&fH#S YES | YES | YES | YES | YES
FONT SELECTION

The “primary” font selection commands in this table can be specified as “secondary” by re-
placing the left parenthesis “(” in the command with a right parenthesis “)”.

Symbol Set (Primary) Ec(ID YES | YES | YES | YES | YES
Spacing (Primary) Ec(s#P YES | YES | YES | YES | YES
Pitch (Primary) Ec(s#H YES | YES | YES | YES | YES
Height (Point Size, Pri- Ec(s#V YES | YES | YES | YES | YES
mary)

Style (Primary) Ec(s#S YES | YES | YES | YES | YES
Stroke Weight (Primary) Ec(s#B YES | YES | YES | YES | YES
Typeface (Primary) Ec(s#T YES | YES | YES | YES | YES
Font Selection by ID # (Pri- | Ec(#X YES | YES | YES | YES | YES
mary)

A-4 Feature Support

PCL COMMANDS

Command Function Command LaserJet Printer Model
1 1D lHISi HpP 4
Select Default Font (Pri- E(3@ YES | YES | YES | YES | YES
mary)
Underline Ec&d?D YES | YES | YES | YES | YES
Ec&d3D YES | YES | YES | YES | YES
Ec&d@ YES | YES | YES | YES | YES
Transparent Print Data Ec&p#X[data] YES | YES | YES | YES | YES
FONT MANAGEMENT
Assign Font ID# Ec*c#D YES | YES | YES | YES | YES
Font Control Ec*c#F YES | YES | YES | YES | YES
USER-DEFINED SYMBOL SET
Symbol Set ID Code Ec*c#R ns ns ns YES | YES
Define Symbol Set Ec(f#W(data] ns ns ns YES | YES
Symbol Set Control Ec*c#S ns ns ns YES | YES
SOFT FONT CREATION
Font Descriptor (Font Ec)s#W(data] YES | YES | YES | YES | YES
Header)

Character Code Ec*c#E YES | YES | YES | YES | YES
Download Character Ec(s#W(data] YES | YES | YES | YES | YES
MACROS
Macro ID Ec&fH#HY YES | YES | YES | YES | YES
Macro Control Ec&f#X YES | YES | YES | YES | YES

Feature Support A-5

PCL COMMANDS

Command Function Command LaserJet Printer Model
w | wp | wmsi | wp | 4
PRINT MODEL IMAGING
Source Transparency Mode | Ec*v#N YES | YES | YES | YES | YES
Pattern Transparency Mode| Ec*v#0O YES | YES | YES | YES | YES
Area Fill ID Ec*cH#G YES | YES | YES | YES | YES
Select Current Pattern Ec*v#T YES | YES | YES | YES | YES
Solid Black (0) YES | YES | YES | YES | YES
Solid White (1) YES | YES | YES | YES | YES
Shading YES | YES | YES | YES | YES
Pattern (2)
Cross-Hatch YES | YES | YES | YES | YES
Pattern (3)
User-Defined ns ns ns YES | YES
Pattern (4)
USER-DEFINED PATTERN
Define Pattern Ec*c#W/[data] ns ns ns YES | YES
Set Pattern Reference Point| Ec*p#R ns ns ns YES | YES
User-Defined Pattern Ec*c#Q ns ns ns YES | YES
Control
RASTER GRAPHICS
Graphics Resolution Ec*t#R YES | YES | YES | YES | YES
75 dpi (75) YES | YES | YES | YES | YES
100 dpi (100) YES | YES | YES | YES | YES
150 dpi (150) YES | YES | YES | YES | YES
200 dpi (200) ns ns ns ns YES
300 dpi (300) YES | YES | YES | YES | YES
600 dpi (600) ns ns ns ns YES

A-6 Feature Support

PCL COMMANDS

Command Function Command LaserJet Printer Model
[l "D lHSi P 4
Graphics Presentation Ec*r#F YES | YES | YES | YES | YES
Raster Height Ec*r#T YES | YES YES | YES
Raster Width Ec*r#S YES | YES | YES | YES | YES
Start Graphics Ec*ri#A YES | YES | YES | YES | YES
Y Offset Ec*b#Y YES | YES | YES | YES | YES
Set Compression Mode Ec*b#M YES | YES | YES | YES | YES
Unencoded (0) YES | YES | YES | YES | YES
Run-Length (1) YES | YES | YES | YES | YES
TIFF (2) YES | YES | YES | YES | YES
Delta Row (3) YES | YES | YES | YES | YES
Adaptive (5) ns ns ns YES | YES
Transfer Raster Data Ec*b#W [datal YES | YES | YES | YES | YES
End Graphics Ec*rB YES | YES | YES | YES | YES
Ec*rC YES | YES | YES | YES | YES
RECTANGULAR AREA FILL
Horizontal Rectangle Size Ec*cH#A YES | YES | YES | YES | YES
Ec*c#H YES | YES | YES | YES | YES
Vertical Rectangle Size Ec*c#B YES | YES | YES | YES | YES
Ec*cHV YES | YES | YES | YES | YES

Feature Support A-7

PCL COMMANDS

Command Function Command LaserJet Printer Model
1| 1D HSi P 4
Pattern ID (Area Fill ID) Ec*c#G YES | YES | YES | YES | YES
#=1 to 100 for YES | YES | YES | YES | YES
shading
= 6 for Cross-Hatch | YES | YES | YES | YES | YES
Patterns
#=0 - 32767 for ns ns ns YES | YES
User-Defined
Patterns
Fill Rectangular Area Ec*c#P YES | YES | YES | YES | YES
Black (solid) (0) YES | YES | YES | YES | YES
White (erase) (1) YES | YES | YES | YES | YES
Shaded (gray) (2) YES | YES | YES | YES | YES
Cross-Hatch (3) YES | YES | YES | YES | YES
User-Defined (4) ns ns ns ns YES
Current Pattern (5) YES | YES | YES | YES | YES
PICTURE FRAME (For Vector Graphics)
Picture Frame Ec*c#X YES | YES | YES | YES | YES
Horizontal Size
Picture Frame Vertical Size | Ec*c#Y YES | YES | YES | YES | YES
Set Picture Frame Ec*cdT YES | YES | YES | YES | YES
Anchor Point
HP-GL/2 Horizontal Ec*c#K YES | YES | YES | YES | YES
Plot Size
HP-GL/2 Vertical Plot Size | Ec*c#L YES | YES | YES | YES | YES

A-8 Feature Support

PCL COMMANDS

Command Function Command LaserJet Printer Model
1 1D lHISi HpP 4
Enter HP-GL/2 Mode Ec%#B YES | YES | YES | YES | YES
Ec%0B YES | YES | YES | YES | YES
Ec%1B YES | YES | YES | YES | YES
Enter PCL Mode EcOottA YES | YES | YES | YES | YES
PROGRAMMING HINTS
Display Functions EcY YES | YES | YES | YES | YES
EcZ YES | YES | YES | YES | YES
End-of-Line Wrap Ec&sdC YES | YES | YES | YES | YES
Ec&s1C YES | YES | YES | YES | YES
PCL STATUS READBACK
Set Status Readback Ec*s#T ns ns ns ns YES
Location Type
Set Status Readback Ec*s#U ns ns ns ns YES
Location Unit
Inquire Status Readback Ec*s#l ns ns ns ns YES
Entity
Flush All Pages Ec&r#tF ns ns ns ns YES
Free Memory Space Ec*s1M ns ns ns ns YES
Echo Ec*s#X ns ns ns ns YES
HP-GL/2 GRAPHICS
Bezier Curves BZ and BR ns ns ns ns YES
All other HP-GL/2 See the PCL 5 YES | YES | YES | YES | YES
Commands Comparison Guide
for a list of all the
HP-GL/2 commands
supported by the
PCL 5 printers.

Feature Support A-9

The following table lists the PJL. commands supported by
the PCL 5 Laserdet printers. For more information about
PJL commands, see the PJL Technical Reference Manual.

PJL COMMANDS
PJL Command Name LaserJet Printer Model
[l "D HSi P 4
COMMENT ns ns YES | ns YES
DEFAULT ns ns ns ns YES
DINQUIRE ns ns ns ns YES
ECHO ns ns ns ns YES
ENTER ns ns YES | ns YES
EOJ ns ns ns ns YES
INFO ns ns ns ns YES
INITIALIZE ns ns ns ns YES
INQUIRE ns ns ns ns YES
JOB ns ns ns ns YES
OPMSG ns ns ns ns YES
PJL (@PJL prefix followed by <LF>) ns ns ns ns YES
RDYMSG ns ns ns ns YES
RESET ns ns ns ns YES
SET ns ns ns ns YES
STMSG ns ns ns ns YES
Universal Exit Language (UEL) ns ns YES | ns YES
USTATUS ns ns ns ns YES
USTATUSOFF ns ns ns ns YES

A-10 Feature Support

LaserJet
Compatibility
Issues

Memory and
Performance

As a result of formatter enhancements made to allow for
future product developments, the PCL 5 Laserdet printers
may appear to be incompatible in some instances with
PCL 4 LaserdJet printers. The remainder of this chapter
describes some of these differences:

The PCL 5 LaserdJet printers allocate memory differently
than the Laserdet series II and other PCL 4 printers. Every
effort has been made to maintain backward compatibility
between PCL 4 and PCL 5 so that jobs that run on the
Laserdet series 11, for example, will also run on a similarly
configured PCL 5 printer. That is, a job running on a Laser-
Jet series II printer with no additional memory or fonts
should run the same on a similarly configured PCL 5
printer (with respect to output speed and memory). In most
cases, the PCL 5 printers will outperform the PCL 4 print-
ers with respect to speed and memory.

However, there may be some corner cases in which this

does not occur. In order to support features such as font rota-
tion and scaling, the PCL 5 printers have the capability to
dynamically allocate as well as deallocate memory. In cases
when the printer has dynamically allocated memory to store
rotated characters or an entire scaled font bitmap, and sub-
sequently runs into a “memory low” situation, memory is
dynamically deallocated to accommodate the new request.

This automatic memory management may result in reduced
output performance for the PCL 5 printers. When this oc-
curs, the printers attempt to format the new page request
by first deallocating all available RAM and then by flushing
the paper path. In these cases, increasing the amount of in-
ternal memory will increase the printer’s output speed.
However, as stated above, the likelihood of this occurring is
minute, especially due to the substantially greater amount
of memory present in the standard PCL 5 Laserdet printers
compared to that in the PCL 4 printers (see the “Lossee/
Lossless Compression” discussion later in this chapter).

Feature Support A-11

Lossee/Lossless
Compression

A-12 Feature Support

In addition, the auto-rotation feature in the PCL 5 LaserdJet
printers can cause what appears to be a memory incompati-
bility with the LaserdJet series II and IIP printers. This is
due to the fact that in the process of internally “rotating” a
font, the printer creates and stores the rotated version of
each character bitmap in RAM.

Therefore, each time the printer rotates a font, it must allo-
cate additional memory to store this font information. To
minimize the memory impact, the printer dynamically ro-
tates on a character-by-character basis rather than rotating
the entire font.

Once the character has been rotated, it is available in mem-
ory for printer access. In order to maintain compatibility
with the LaserdJet series II printer, the PCL 5 printers have
an internal font set that contains both the portrait and land-
scape bitmaps of the fonts that are internal to the Laserdet
series II printer.

The Laserdet 4 printer has a unique way of handling low
memory situations. The printer provides the best image for
the amount of available memory using data compression
techniques. When the printer detects a low memory situ-
ation, it examines the page data and attempts to compress
any bitmap images so that they print successfully. If an im-
age is compressed at this point, the image is printed with-
out any data loss (lossless compression). However, if the
printer attempts to compress the image and there is still
not enough memory, it compresses the image using a tech-
nique that requires less memory, but loses some of the data
in the process (lossee compression). In most cases, the re-
sulting image is very acceptable, providing a favorable way
of handling a memory shortage.

Floating CAP

Unlike the Laserdet series II printer, the PCL 5 Laserdet
printers will not allow the cursor position to “float” before
printable data is received following a form feed. (The term
floating CAP refers to a state at the start of a new page in
which the current active cursor position is not yet defined.)

Because of this difference between the two printers, some
situations may occur where the text at the top of the page is
printed in a different vertical position on the PCL 5 Laser-
Jet printers than on the PCL 4 printers. This change will
not impact most applications, however there may be some
problems in applications that print rules and text near the
top of the page. The following example demonstrates how
any problems with floating CAP can be avoided.

Feature Support A-13

Example: In this example, the cursor position is pushed after the VMI
Compatibility and command is sent, resulting in a situation in which both the
Floating CAP PCL 5 printers and the Laserdet series II printer produce
compatible output. If the cursor was pushed before the VMI
command, the PCL 5 printer would print the text above the
rule and the LaserdJet series II printer would print it below
the rule (see Figure A-1).

EE

Ec&L2A
Ec&120C

Ec& 1S

This is a test.
Ec&f1S
Ec*c4560h36V
Ec*cdP

Reset the printer.

Select letter-size paper.
Specify a VMI of 20.
Push the cursor position.
Send text to the printer.
Pop the cursor position.
Define a rule.

Print the rule.

This is a test.

This is a test.

PCL 5 Laserdet
Printout

Laserdet Series 11
Printout

Figure A-1. The Results of Floating CAP

A-14 Feature Support

Video Interface and
Expanded I/O

Modular I/O

Miscellaneous
Compatibility Issues

The expanded I/O slot in the back of the LaserdJet series II
printer is able to support both expanded I/O as well as
video interface functionality. The video interface portion of
the I/O slot is not included in the design of the PCL 5 Laser-
Jet printers, so those products using the LaserdJet series II
video I/O will not operate properly with the PCL 5 printers.

In addition, the expanded I/O specifications for the PCL 5
printers are different than for the Laserdet series II printer.
Those products that upgrade to the PCL 5 Laserdet printer
specifications, however, will be backward compatible with
the LaserdJet series II printer. (See the Modular 170 discus-
sion on the next page.)

The Laserdet IIISi and LaserdJet 4 printers have a modular
I/0 which features high speed, bi-directional signals,
link/printer independence, and 1/O configuration from the
front panel. The modular I/O (MIO) is not compatible with
the expanded I/O implementation.

Listed below are some subtle differences between the Laser-
Jet series II and PCL 5 LaserdJet printers. Most of these dif-
ferences are so obscure or insignificant that they probably
will be unnoticed. They are included here for completeness.

Default Symbol Set

If a PCL 5 LaserdJet printer receives a symbol set command
for which there is no matching font, the default symbol set
is used. On the other hand, the LaserdJet series II printer
first attempts to use the previously selected symbol set be-
fore it uses the default symbol set.

Eighth Bit Shift Not Supported

The PCL 5 Laserdet printers do not support the eighth bit
shift feature which allows shifting to the secondary default
font based on the eighth bit of the character. The Laserdet
series II printer had this feature, although it wasn’t docu-
mented. Eighth bit shift has been used mostly in minicom-
puter environments and is a carry-over from previous

Feature Support A-15

A-16 Feature Support

technologies. It is not the preferred method for font selec-
tion on the LaserdJet family of printers.

Defaulting HMI After Font Changes

The PCL 5 Laserdet printers default the HMI of the newly
selected font after all font parameter changes; the LaserdJet
series II printer does not default HMI if the only parame-
ters that were changed are style, stroke weight, or typeface.

Internal Units

The internal unit of measure used by the PCL 5 LaserdJet
printers and all current PCL 4 printers is different than
that of the Laserdet series II printer. All Laserdet printers
introduced after the LaserdJet series II use 1/7200th of an
inch increments instead of the 1/3600th of an inch incre-
ments used in the Laserdet series II. This measurement
unit is used by the printer to represent PCL Units, de-
cipoints, column, and row positioning commands. The posi-
tioning command values are translated to internal units
during formatting and rounded to physical dot positions
when data is printed. The Laserdet series II printer, in addi-
tion to using a different internal unit, also truncates that
value rather than rounding it. In some obscure cases, this
difference in internal units may slightly affect printer out-
put.

Upper-Case Binary Transfer Character

Unlike the LaserdJet series II printer, the PCL 5 Laserdet
printers only support the uppercase binary transfer charac-
ter (W) in the transfer raster data command, Ec*b#W/[ras-
ter data]. In other words, if this command is terminated
with a lower-case w, the printer will ignore the command.

Return Model Number Not Supported

The PCL 5 Laserdet printers do not support the “return
model number” escape sequence and will ignore it. Al-
though it was not documented or supported, the LaserJet
series II printer had this command as one of its features.
The LaserdJet 4 printer provides a similar feature using the
PJL INFO ID command. See the PJL Technical Reference
Manual for more information about using this feature.

Self Test and Font Printout

Pressing the PRINT FONTS key on the control panel or
running a printer self test (either from the control panel or
programmatically) automatically resets the PCL 5 LaserJet
printers. As with any reset, any existing temporary fonts or
macros are automatically erased. (Unlike the PCL 5 Laser-
Jet printers, the LaserdJet series II printer doesn’t perform a
reset during a PRINT FONTS or self test execution.)

Ec?DC1

The PCL 5 Laserdet printers do not support the Ec?DC1 es-
cape sequence and will ignore it upon receipt. The LaserJet
series II printer was the last printer to support this com-
mand (it was an undocumented feature).

Display Functions Mode and Macros

The PCL 5 Laserdet printers ignore the display functions
mode command if it is invoked from within a macro. This is
not the case for the Laserdet series II printer.

Font Management Commands and Macros

The PCL 5 Laserdet printers will not ignore font manage-
ment commands within a macro as the Laserdet series 11
printer does.

Feature Support A-17

A-18 Feature Support

Logical Page Position

The logical page position with respect to the physical page
is different for the PCL 5 LaserdJet printers than it is for the
Laserdet series II printer. For all Laserdet printers intro-
duced after the Laserdet series II, the logical page is cen-
tered on the physical page. The left and right margins for
all paper sizes in portrait mode (at 300 dpi) are 75 dots and
in landscape mode they are 50 dots each. For the LaserJet
series II printer, the logical page is not centered on the
physical page; there is a 50-dot left margin for all paper
sizes, a 100-dot right margin for US paper sizes, and a 92-
dot right margin for A4 paper (in portrait mode).

Starting Cursor Position

The algorithm that calculates the starting cursor position
for each page is different for PCL 5 than for the PCL 4. For
the PCL 5 LaserdJet printers, the starting cursor position is
below the top margin by 75% of the current VMI, for Laser-
Jet series II, the value is 72%. This difference will cause the
top line of text to be printed slightly lower on the page for
the PCL 5 Laserdet printers than for the LaserdJet series I1
printer.

Unsupported Page Length or Page Size Command

An unsupported page length command is one that exceeds
the maximum supported page size of the printer. Upon re-
ceiving an unsupported page length or page size command,
if printable data has been received the PCL 5 LaserdJet
printers eject a page and continue printing and formatting
for the current paper size. In comparison, the LaserdJet
series II printer ignores the command. Because of this
difference, the PCL 5 LaserdJet printers may appear more
sensitive to erroneous page length/size commands than the
LaserdJet series II printer.

Raster Images Across Page Bou ndaries

The LaserdJet series II printer allows a raster image to cross
page boundaries and maintain the raster parameters
(mode, resolution, and left margin). The PCL 5 LaserdJet
printers will not allow this to happen and will automat-
ically close any open raster images as well as all associated
raster parameters. The effect of this closure is that raster
escape sequences that alter the resolution, mode, or left
margin on the subsequent page will be recognized by the
PCL 5 LaserdJet printers but not by the LaserdJet series 11
printer.

Feature Support A-19

Programming Examples

Contents

Introduction.

Fonts and Print Direction

Printing Rules Using the Print Model

Print Model Font Effects

HP-GL/2 Font Effects............
HP-GL/2 Graphicscciiiiiiia....
Raster Graphics Compression

Introduction

Hewlett-Packard provides samples of short programs writ-
ten in C programming language to demonstrate some of the
PCL 5 LaserdJet printer features. The executable code and
source code for each program are included on the HP-pro-
vided disks so that you may see how each feature was used.

This appendix shows scanned images and file names of the
print samples that each of the included programs prints. It
also gives a short explanation of the demonstrated features.
Although many of the programs demonstrate more than
one feature, they are organized by the most dominant
feature.

Fonts and Print

Direction

PDIRSIMP.C

The PCL 5 LaserdJet printers allow you to print in four ori-
entations: portrait, reverse portrait, landscape, and reverse
landscape. Using the print direction command, text and
graphics may be printed in more than one orientation on
the same page.

This program demonstrates using the print direction com-
mand to print the word “hello” in portrait orientation (0 de-
grees) and the word “there” in landscape orientation (90
degrees).

there

hello

Programming Examples B-1

PDIRFONT.C

B-2 Programming Examples

This program prints samples of the scalable CG Times type-
face ranging in size from 1 point to 39 point. The print direc-
tion command is used to print the same fonts upside-down
(reverse portrait orientation).

i plog sauny noy id ¢
] pjog sawly 97 3d /¢
V[prog sauni] 07 id ¢f
aif pjog sawip nH id gg
AW piog sawiy 0y id g
Ay plog sawuig 0 id 67
mpmy prog sawry 9y w7
2y progy sawy 03 3 g7
nmif prog sawig 0 d g7
AP prog saung 0 ad 17

[Y p4 €93 Timeas ol i

15 g 17 Timnas Mol draki
17 pr Cti Timer Bold hralic

¥ pr 00 Tieees Bold Droalie

21 pr O Times Bold Ttlic
23 pt O Times Bold Talic
25 pe CG Times Bold Ialic

27 mt CG Times Bold Italic

29 pt CG Times Bold Italic
31 pt CG Times Bold Italic
33 pr CG Times Bold Iralic

35 pt CG Times Bold Italic
37 pt CG Times Bold Italic
39 pt CG Times Bold Italic

2f preg s 03 g7
ANEIT Plog AL A0l g
I DI Bl g i o
NTE PO S 4
Y P el oo o

oy mey

—_—r

Printing Rules Using
the Print Model

RULEMODS.C

Rules can be printed as black, shaded, patterned, or white
rules using the Print Model.

This program shows a sample of a black rule, a white rule
and a shaded rule that were created using the Print Model.
The black rule is printed first and then the other two rules
“erase” the black using the source and pattern transparency
mode commands.

I

Print Model Font
Effects

SHADFONT.C

The LaserdJet printers containing PCL 5 can print bit-
mapped and scalable fonts in a wide range of sizes and
styles. Using the print model, these fonts may be filled with
shades and patterns or printed as reverse type. The follow-
ing sample programs demonstrate some of the font effects
that the PCL 5 LaserdJet printers can easily perform.

This sample uses the Print Model to produce fonts filled
with two different shading patterns.

25 pt Sample Italic Shaded Text
25 pt Sample Italic Shaded Text

Programming Examples B-3

RULEFONT.C In this program example, the Print Model is used to print
shaded and pattern-filled fonts on a black background.

25 pt Sample Italic Pattern
25 pt Sample Italic Pattern

PTNFNTOIL.C Similar to the RULEFONT.C program, this program prints
more sizes of fonts filled with shades of gray and patterns.
To print this file, you need to download the appropriate 36-
and 48-point Helv Outline fonts or the printer will substi-
tute another font.

B-4 Programming Examples

SHADOW.C The SHADOW.C program produces a landscape 200-point
CG Times Italic font that is given the appearance of depth
using the Print Model. The word “Galaxy” is printed in
black, and then overlaid with six slightly offset (in the y
direction) gray-shaded images of the same word.

SHADOW2.C This program is almost identical to the SHADOW.C pro-
gram except that the images are offset in the xand y
direction.

Programming Examples B-5

HP-GL/2 Font Effects

HPGLDI45.C

HPGLABS82.C

B-6 Programming Examples

With the printer’s HP-GL/2 capability, fonts may be rotated
to any angle and special effects such as mirroring and out-
lining may be done.

This program demonstrates the use of the HP-GL/2 DI (ab-
solute direction) command to print the word “Galaxy” at a
45 degree angle. The sample on the left uses the HP-GL/2
stick font and the sample on the right uses the CG Times

Italic font.
’b-‘A
) f

(,)’0
Galaxy Galaxy

The HPGLABS82.C program produces an anisotropically
scaled font along with its mirror image. The HP-GL/2 SI
(absolute character size) command was used to create the
mirror image.

Gualaxy
RN N

HPGLLABS.C This program prints the word “Galaxy” rotated every 30 de-
grees and surrounded by an anisotropically scaled circle.
The HP-GL/2 DI (absolute direction) command is used to ro-
tate the fonts. The example also demonstrates anisotropic
scaling of the CG Times font.

HPGLLAB4.C This program is nearly identical to the HPGLLABS5.C pro-
gram except the HP-GL/2 stick font is used instead of the
CG Times font.

Programming Examples B-7

SISRSAMP.C

B-8 Programming Examples

The SISRSAMP.C program shows the use of the SI (abso-
lute size) and SR (relative size) commands to scale fonts. If
the picture frame size is reduced, the border is automat-
ically made proportionately narrower and the Univers (rela-
tively scaled) fonts are also scaled in proportion to the
change in picture frame size. The CG Times text, because it
is scaled using the Sl (absolute size) command, stays the
same size regardless of picture frame size.

CG Tumes 10 pi
ST = JXI

C oy T rrrres T r>r
S = X5

Univers 20 pt
SR = 2X4

LArrrvers 20O orf
SN = =SEX2Z

HP-GL/2 Graphics

PIEWEDGE.C

HP-GL/2 allows you to import existing HP-GL/2 graphs or
to create graphics from within your application.

The PIEWEDGE.C program demonstrates a fairly complex

pie chart that prints successfully without enabling the page
protection mode. The program also demonstrates using HP-
GL/2 shading and hatching patterns and also uses PCL pat-
terns. The CG Times font is used to label the pie chart.

HP-GL/2 Shading HP-GL/2 Patterns

o

PCL patterns

Sample Pie Chart Using HP-GL/2 Vectors

Programming Examples B-9

Raster Graphics
Compression

ARROW1.C

AROWTIFF.C

AROWSHAD.C

AROWPMOD.C

B-10 Programming Examples

The PCL 5 Laserdet printers support several raster data
compression modes as discussed in Chapter 9. Two of these
are demonstrated in the following examples.

This program prints an arrow using raster data that has
been compressed using run-length encoding (mode 1).

»

This program prints the same arrow as ARROW1.C using
the TIFF, or PackBits compression mode (mode 2).

The AROWSHAD.C program prints a shaded version of the
same arrow. The Print Model is used to shade the image
and the TIFF compression mode is used to condense the
data.

This program demonstrates the use of the Print Model to
print a shaded arrow on top of a black background. The ras-
ter data is encoded using mode 2 compression (TIFF).

Integrating Rambo

Contents

Introduction. C-1
Rambovs.Marie............ C-1
Unbound Scalable Fonts and Character Data C-2
What Does Rambo Do?. C-2

The Rambo Command Line C-5
ReturnCodes i, C-9
Symbol Set Mapscoiiinin... C-9

Example Implementation Using Rambo........... C-12
Show a List of Typefaces C-12
Show a List of Symbol Sets C-16
Make a Scalable FontFile................... C-16
Show Command-Line Usage C-17

Printingthe Test Files C-18

Introduction The Rambo utility allows you to create downloadable scal-
able fonts from Intellifont Library files. As mentioned in
Chapter 7, integrating Intellifont without use of the Auto-
Font Support Installer involves adding the Rambo program
module to your software application. If you are familiar
with the Marie utility which was distributed with the HP
Laserdet I1I printer introduction, the Rambo utility re-
places Marie.

Rambo vs. Marie In the Laserdet III, IIID, and IIISi printers, downloadable
scalable fonts must be bound to a symbol set before down-
loading. This symbol set “binding” means that only those
characters contained in the symbol set are included in the
font. Therefore if another symbol set in the same scalable
font is needed, then another scalable font must be down-
loaded. The LaserdJet IIIP and Laserdet 4 printers eliminate
the need to download another scalable font just to get an-
other symbol set, and the Rambo utility provides this func-
tionality. In contrast, the previously used Marie program
was written to produce only symbol-set-bound scalable
fonts.

To provide the “unbound” capability in the Laserdet I1IP/4
printers, a new font header type and format have been de-
fined for unbound scalable fonts. Fonts in this format can
be attached to any valid symbol set in the printer—either
an internal symbol set or a soft symbol set (user-defined
symbol set). The format of this new type of font header
looks very much like the Intellifont Scalable Font Descrip-
tor format (descriptor format 10).

Note % The definition of the font header fields and values is de-
scribed in detail in the PCL 5 Technical Reference Manual.

An unbound scalable font contains enough characters to al-
low the font to be printed with any symbol set, as long as
the font and the symbol set are compatible. The key

Using Rambo C-1

Unbound
Scalable Fonts and
Character Data

What Does
Rambo Do?

C-2 Using Rambo

difference between bound and unbound scalable fonts is
that a bound scalable font is fixed to the symbol set it was
downloaded with, while an unbound scalable font can be
bound to any symbol set at print time.

The character data requirements are slightly different for
an unbound scalable font than for a bound scalable font.
With bound fonts, the characters are numbered according to
their code position in their symbol set. With unbound fonts,
the character numbering changes. Since the LaserdJet I11P/4
printer’s internal symbol sets are based on the HP Master
Symbol List (MSL) numbering scheme, character numbers
must match the MSL numbers when creating an unbound
scalable font. For example, suppose the first character of an
unbound scalable font is an exclamation point. The MSL
number for the exclamation point is 1 whereas the value is
33 in the US ASCII symbol set. The application downloads
a character code location of 1 when creating the unbound
scalable font; at print time, when a symbol set is attached,
the printer converts the character into a “bound” scalable
character with character location 33.

HP MSL numbers of all characters in the HP LaserdJet
IIIP/4 printers are listed in Appendix H.

Rambo generates both bound and unbound scalable fonts.
Rambo is a superset of the Marie code and operates almost
identically to Marie. It’s operation is covered in this chapter.
The Rambo utility uses a typeface library file as input and
writes the PCL code for either a bound or unbound scalable
font. As output, the Rambo program creates scalable soft
fonts which can be downloaded directly to and scaled by the
HP LaserdJet I1TP/4 printers.

As mentioned in Chapter 7, Rambo builds a scalable font
from a Library file by extracting character data from only
those typeface-sensitive characters in the specified symbol
set. (Most typefaces have 290 typeface-sensitive charac-
ters.) The resulting file is encapsulated by a PCL header,
creating a scalable font file.

Note l'ﬂ

The executable Rambo code is available on disk from HP;
the name of the executable file is RAMBO.EXE.

When creating fonts for non-HP printers, a program module
similar to Rambo can be used to convert Library files to an-
other printer format.

The following Rambo-related files are included on the HP-

supplied disks:

GT-SYM.C
R.C
WT-PCL.C

IOBYTES.C
RD-LIB.C
RAMBO.EXE
R.EXE
ERRORS.H
FAIS.H
LIBRARY.H
MARIE.H
PCLFNTHD.H
PORT.H
STRIPPED.H
RAMBO.MAK
R.MAK
TDD1.PCL

TDD1.PCL

Code to read in the symbol set data
The Rambo shell

Code to write the font data for scalable
fonts

Code that handles low-level 1/O
Code that reads the library file
The executable code for Rambo
The executable code for the Rambo shell
Rambo include file

Rambo include file

Rambo include file

Rambo include file

Rambo include file

Rambo include file

Rambo include file

Make file for RAMBO.EXE
Make file for R.EXE

A user-defined symbol set needed to
print DINGBATS.TXT

A user-defined symbol set needed to
print DINGBATS.TXT

Using Rambo C-3

C-4 Using Rambo

TDD2.PCL

TDD3.PCL

TDDV.PCL

HPCG.NDX

ERRORS.TXT

MSL.TXT

DINGBATS.TXT

QMSL.TXT

A user-defined symbol set needed to
print DINGBATS.TXT

A user-defined symbol set needed to
print DINGBATS.TXT

A user-defined symbol set needed to
print DINGBATS.TXT

Index file used to make unbound scal-
able fonts

Used by Rambo shell to print error mes-
sage strings

Prints out all the characters in the MSL
for an unbound scalable font

Prints out all the Dingbats characters for
an unbound scalable font

A quick, three-page MSL printout, similar
to MSL.TXT

The Rambo
Command Line

The Rambo program is command-line driven and is used as
described below:

RAMBO Typeface# SymSet [/ Ttypeface _diA
[/Ssymbol_set_dif[/Foutput_directonj[/Ooutput_file][/U]

Where:

Required Parameters:

Typeface# is the number of the library file (i.e. 92500 for CG
Times).

SymSet is the two-character abbreviation for the symbol set
(i.e. R8 is Roman-8) or the two-character index file designa-
tor (i.e. CG for HPCG.NDX).

Optional Parameters:

/T specifies the directory where the library (*. TYP) files are
found (default = \TD\TYPE).

/S specifies the directory where the symbol sets (*.SYM)
and index files (* NDX) are located (default = \TD\SYM-
BOLS).

/F specifies the directory to write the output of Rambo (de-
fault = \'TD\FONTS).

/0 sets the name of the output file (the default follows the
naming convention discussion under File Naming Conven-
tion in chapter 6).

/U means that the user wants the scalable font to be un-
bound. If /U is not present, the font will be bound to the
specified symbol set.

The Rambo program parameters are defined in more detail
as follows:

Typeface# (Required)—the Typeface# parameter is the
5-digit Agfa number (CG number) given to the scalable type-
face. Some of the typeface numbers are listed in Table

C-1, but rather than looking up numbers in the table, the
typefaces and their corresponding numbers can be retrieved

Using Rambo C-5

C-6 Using Rambo

by using the HP-supplied routine type_util as used in the
R.EXE shell program. Refer to the example application enti-
tled Show a List of Typefaces (later in this chapter).

Table C-1. Sample Typeface Numbers

Typeface#

90133
90267
90268
90326
90349
90460
90508
92500
92501
92504
92505
94021
94022
94023
94024

Typeface Name
Dom Casual
Microstyle
Microstyle Bold
Brush
Park Avenue
Microstyle Bold Extended
Uncial
CG Times
CG Times ltalic
CG Times Bold
CG Times Bold Italic
Univers Medium
Univers Medium ltalic
Univers Bold
Univers Bold Italic

The 5-digit typeface number is also the filename of the Li-
brary file stored in the \TD\TYPE directory when the type-
face is installed with the AutoFont Support Installer or
Type Director 2.X. For example, the library file 90133.TYP
is the Dom Casual typeface as shown in the table.

SymSet (Required)—the SymSet parameter is a 2-charac-
ter symbol set code (or the 2-character index file designa-
tor). The symbol set file is usually located in the
\TD\SYMBOLS subdirectory and has a name such as
TDUS.SYM, where the two characters after TD in the file-
name are the symbol set code. An index file has a name
such as HPCG.NDX, where the two characters after HP are
the index file designator. The symbol set files are included
on the HP-supplied disks and also as standard Type Direc-
tor symbol sets. A partial list of the Type Director symbol
sets and their two-character codes is shown in Table C-2:

Table C-2. Sample Symbol Set Values

SymSet Symbol Set Name
DT DeskTop
El ECMA-94 Latin 1
LG Legal
PC PC-8
R8 Roman-8
TS PS Text
us ASCII
VI Ventura International
VM Ventura Math
VU Ventura US
WN Windows

typeface_dir (Optional)—The typeface_dir parameter is
the path to the typeface directory where library-format type-
faces (such as 90133.TYP) are stored. When typefaces are
installed using the AutoFont Support Installer or the Type
Director Install Typefaces menu, the resulting library files
are placed in the \TD\TYPE subdirectory. The default path
is C:\TD\TYPE, and is the path used if no parameter is
specified. (The Glue File discussed at the end of Chapter 6
also contains typeface and path information.)

Using Rambo C-7

Example:

Using Rambo (#1)

Example:

Using Rambo (#2)

C-8 Using Rambo

symbol_set_dir (Optional)—the symbol_set_dir parameter
is the path to the symbol set directory where the symbol set
files such as TDUS.SYM are stored. When Type Director is
installed, it automatically stores all of the included symbol
set files in the \TD\SYMBOLS subdirectory. The default
path C:\TD\SYMBOLS is used if no parameter is specified.

output_dir (Optional)—the output_dir parameter is the
path to the directory where the output file will be written
(\TD\FONTS is the default).

output_file (Optional)—the output_file parameter is the file-
name of the scalable font file created by the Rambo program.
Note that this is not a full pathname for the file; it is just the file-
name. The scalable font file will be written to the ouput direc-
tory \TD\FONTS is the default). The default filename is
determined by Rambo depending on the type-face, treatment,
and symbol set. The file naming convention for scalable font
files is described in the File Naming Convention discussion in
Chapter 6.

To create a Dom Casual scalable font file “bound” to the AS-
CII symbol set, and assuming the typeface and symbol set
files are in the C:\TD\FONTS and C:\TD\SYMBOLS di-
rectories respectively, enter the following from the com-
mand line:

RAMBO 90133 US

The resulting file would be named DCRZJUSO.SFP and it
would be placed in the current DOS directory.

To create an unbound Dom Casual scalable font file,
assuming that the typeface files are in the C:\TD\FONTS
directory and the index file (HPCG.NDX) is in the
C:\TD\SYMBOLS directory, enter the following from

the command line:

RAMBO 90133 CG /U
The resulting file would be named DCRZJCGO.SFP.

Example:
Using Rambo (#3)

Return Codes

Symbol Set Maps

Note l'ﬂ

To create an unbound scalable font file in the Park Avenue
typeface (while changing the typeface directory to
D:\FONTS\TYPE and changing the output filename to
PARK.UNB), enter the following:

RAMBO 90349 CG /U /TD:\FONTS\TYPE /OPARK.UNB

The resulting file would be named PARK.UNB and it would
be placed in the current DOS directory. Note the lack of
space between the options and the arguments in the com-
mand line. For example, there is no space between “/T” and
“D:\FONTS\TYPE”, and between “/O” and “PARK.UNB”.

The error codes listed in Table C-3 are returned by Rambo
to the calling process. These error codes are contained in
the file ERRORS.TXT included on the HP-supplied disks.
(ERRORS.H is also included and is necessary to compile
R.C, the Rambo shell program.)

RAMBO.EXE will not print any error messages. R.EXE
uses ERRORS.TXT to display errors returned by Rambo.

Symbol set files are included in Type Director in the sym-
bols directory; the default symbols directory is C:\TD\SYM-
BOLS. The symbol set files have names such as TDss.SYM,
where ss is the two-character symbol set code for a given
symbol set. You can read symbol set files from the Type Di-
rector symbols directory, or copy only the files you wish to
support into a separate directory or into the application di-
rectory. Symbol set maps for all of the default Type Director
symbol sets are included in the PCL 5 Printer Language
Technical Reference Manual.

For creating unbound scalable fonts, the index files (such as
HPCG.NDX) should be copied to the symbols directory.

The Type Director 2.X product is available for developers
from HP upon request.

Using Rambo C-9

C-10 Using Rambo

Table C-3. Rambo Error Codes

Error Code 0 (No Errors)
Error Codes 1-30 (Memory Errors)

© 00 N O oA WDN B

[S o S
A W N P O

15

Insufficient memory for font header

Insufficient memory for face header

Insufficient memory for global dir

Insufficient memory for global Intellifont segment
Insufficient memory for raster param segment
Insufficient memory for attribute header segment
Insufficient memory for validation structure
Insufficient memory for display header
Insufficient memory for compound char list
Insufficient memory for font alias table

Insufficient memory for copyright

Insufficient memory for typeface header segment
Insufficient memory for symbol

Insufficient memory for sorting codes

Insufficient memory for compound character parts

Error Codes 31-60 (Disk Access Errors)

31
32
33
34
35
36

Invalid destination path
Unable to open library file
Font file already exists
Unable to write to font file
Symbol set file not found
Disk full

Table C-3. Rambo Error Codes (Continued)

Error Codes 61-90 (File Structure Errors)

61 Library file is not a disk file

62 File segment directory not found

63 Segment size is larger than expected size
64 Too many characters

65 No global Intellifont segment found

66 Bad or missing raster param segment

67 Bad or missing attribute header segment
68 Bad or missing display header segment
69 Bad or missing compound char segment
70 Bad or missing font alias table

71 Bad or missing font alias segment

72 More than one typeface in font alias table
73 No HP font alias table found for this typeface
74 No copyright segment found

75 Bad or missing typeface header segment
76 Escape font descriptor size too large

77 Y-escapement for symbol is non-zero

78 Part of compound character not found

79 Symbol set read does not match request
80 Insufficient Symbol Set data

81 “/END” expected in symbol set file

82 Missing compound error

Error Codes 91-120 (Command Line Errors)
91 Invalid command line arguments

Using Rambo C-11

Example
Implementation
Using Rambo

Show a List
of Typefaces

C-12 Using Rambo

An example application is included with Rambo to illus-
trate how to call the Rambo program and to work with type-
face numbers and names. The source code is titled R.C and
is designed to be a user interface to Rambo. In this manual,
the sample application is referred to as the Rambo shell, or
just the shell.

The shell can be used in two ways: by command line, or
through menus. If R.EXE is called with no command line ar-
guments, or they are invalid, the user will enter the menu
interface. Through these menus, the user can set all the
command line arguments, as well as getting information on
available typefaces and symbol sets.

To fully understand the shell, print a listing of the R.C
source code. The executable code for the shell application,
R.EXE, is also supplied.

The Rambo shell can perform the following four functions:
* Show a list of available typefaces

» Show a list of standard symbol set abbreviations

» Make a scalable font file

e Show the command-line usage of the shell

Each of the four functions that the shell performs are accom-
plished by different routines. The routines are: typeutil,
print_error, menu, list_types, list_symbols, call_program,
getstring, and valid_symset. A map of the shell functions

and its routines is shown in figure C-1. These four functions
are explained in more detail in the following sections.

Type Director maintains a typeface information file called
TYPEFACE.TD that is updated every time a font is in-
stalled. The file is located in the \TD\TYPE subdirectory
(default) and contains information about every typeface
name and number that has been installed using Type Direc-
tor. The shell program’s typeutil routine reads typeface in-
formation from this file and performs five functions for

Note l'ﬂ

O

Show
Typeface List

creating a list of typefaces. The list_types function of the
shell program illustrates a way to use the typeutil routine

to actually create a typeface list.

The TYPEFACE.TD file is created by Type Director and is

used in the sample implementation as an example of what
can be done to list typefaces; developers may create a simi-
lar file to indicate what typefaces are available to the user.
See the Glue File discussion at the end of Chapter 6.

Shell
Application

Menu

SPAWN RAMBO

Show
Symbol Set
List

Create
Scalable
Font

Show
Command
Line Usage

| LIST_TYPES | | LIST_SYMBOLS | | CALL_PROGRAM |

| TYPEUTIL |

| TYPEUTIL |

| VALID_SYMSET |

| PRINT_ERROR |

| SPAWN RAMBO |

The shell is an example application written to demonstrate how to call Rambo and manipulate typeface names and
numbers. The shell is a user interface to the Rambo program. It can show a typeface listing, a symbol set listing,
create a scalable font file, or show command-line usage of the Rambo program. Rambo can also be spawned di-

rectly through the shell interface using command line arguments, which is the way to display any

errors returned by Rambo.

Figure C-1. The Rambo Shell Program’s Four Functions

Using Rambo C-13

C-14 Using Rambo

Note l'ﬂ

The typeutil routine performs the following five functions:

1) Returns data on the first entry in TYPEFACE.TD
(first_entry)

2) Converts a given typeface name to its Agfa (CG) typeface
number (name_to_num)

3) Converts a given Agfa (CG) typeface number to its type-
face name (num_to_name)

4) Given an Agfa (CG) typeface number, returns the next
typeface number in TYPEFACE.TD (next_num)

5) Given a typeface name, returns the next typeface name
in TYPEFACE.TD (next_name)

If a typeface is removed using Type Director, its typeface in-
formation still remains in the TYPEFACE.TD file.

Typeutil is an HP-supplied routine which can read the
TYPEFACE.TD file in the typeface subdirectory (default:
\TD\TYPE). It returns data on the first entry in the file,
converts a typeface name to its number, converts a typeface
number to its name, returns the next number in the file, or
returns the next typeface name in the file.

Typeutil uses the following structure for conveying informa-
tion, with the five entries in option_list corresponding to the
five functions of typeutil (C programming language).

enum option_list {FIRST_ENTRY, NAME_TO_NUM,
NUM_TO_NAME, NEXT_NUM, NEXT_NAME};

typedef struct

{
enum option_list option;/*Used to select desired function*/
char |_name[51];/* CG long typeface name */
long number;/* CG Typeface ID # */

} TYPE_UTIL;

If a typeface name or number is not found, or if the end of
file is reached during the NEXT NAME or NEXT_NUM
functions, typeutil will return “1_name = **NOT
FOUND**” and “number = 0”.

TYPEUTIL
(READS TYPEFACE.TD FILE)

| FIRST_ENTRY | | NUM_TO_NAME | | NEXT_NAME |

|NAME_TO_NUM| | NEXT_NUM |

Figure C-2. The Functions of the Typeutil Program

The list_types function of the shell program is a good exam-
ple of how to use the typeutil routine to create a typeface
list. Refer to the routine list_types in the R.C source code.
Each *.TYP file in the typeface directory (default
C:\TD\TYPE) is read using DOS system calls. These file-
names are converted to long integers and then typeutil is
called to convert the typeface number to a typeface name.
The typeface number and name are then displayed on the
screen, and the next file is processed. You can use this same
process to display a list of available typeface names to a
user, and can then use the corresponding typeface number
when calling the Rambo program.

Using Rambo C-15

Show a List of The list_symbols function of the shell program prints out a
Symbol Sets hard-coded list of two-character symbol set codes. (Refer to
the list_symbols routine in the R.C program source code.
Since the list is hard-coded, the symbol sets listed may or
may not be in the user’s symbol set directory (default
C:\TD\SYMBOLS).

It is possible to read in each TDxx.SYM file from the sym-
bol set directory and make a list of available symbol sets,
but this is not implemented in the shell program. A similar
process is recommended for software developers to use to
display a list of symbol sets to an end user.

When using this shell program, if a user attempts to select
an unavailable symbol set while making a scalable font,

an error message will be printed on the screen (refer to the
valid_symset routine at the end of the shell program source
code).

Make a Scalable The call_ program function of the shell program illustrates
Font File how to convert a scalable typeface file to a scalable PCL
font file, which is the main reason for integrating Rambo.

The call_ program routine performs a five-step process to
set up and run the Rambo program:

1) It prompts the user for the typeface number.

2) It calls typeutil to read the TYPEFACE.TD file and con-
verts the typeface number to a name to ensure that the
typeface has been installed through Type Director.
(NOTE: If a typeface is removed using Type Director, its
information still remains in the TYPEFACE.TD file. This
shell program does not check for the existence of the type-
face file in the typeface directory; it just checks that the
typeface was previously installed using Type Director.
Also, instead of the TYPEFACE.TD file, the Glue File
[discussed in Chapter 6] can also be used to generate a
list of typefaces.)

3) It asks the user if the font should be unbound.

C-16 Using Rambo

Show
Command-Line
Usage

4) It prompts the user for the two-character symbol set code

or index file designator.

If the font will be unbound, the shell checks to see if you
chose “CG” as the index file; if not, a warning is printed.

If the font will be bound, the input is checked against the
available symbol sets in the symbol set directory (default
C:\TD\SYMBOLS) using the routine valid_symset. (Re-
fer to the valid_symset routine in the R.C source code.) A
file named TDss.SYM must exist there, where ss is the
two-character abbreviation for the symbol set. If the se-
lected typeface is “Dingbats”, the call_program routine
also checks to ensure that the corresponding symbol set
chosen is D1,D2, D3, DS, or DV (accepted Dingbat sym-
bol sets); otherwise, an error message is printed.

5) It prompts the user for an output filename. If no filename

is entered, the Rambo program uses the default filename.
The construction of this default filename is discussed in
the output_file section (earlier in this chapter).

6) Once the typeface number, symbol set, and the optional

output filename are entered, the shell sets up the com-
mand line for the Rambo program. This command line is
displayed on the screen so the user can see how the com-
mand line operates. The Rambo program is then called.
Any returned error codes are printed using the routine
print_error. Refer to the R.C source code for the print_er-
ror routine and the ERROR.TXT file for a listing of print
errors.

The shell program’s “Show Command-Line Usage” function

prints information to the screen explaining how to use the
shell to call the Rambo program using command-line argu-
ments. If command-line arguments are used, the menu in-
terface is bypassed. If the shell is called without command-
line arguments, or with too many command-line argu-
ments, the menu interface of the shell is then used. Other-
wise, Rambo is called using the entered command line.

Using Rambo C-17

Printing the
Test Files

C-18 Using Rambo

Note l'ﬂ

Command line usage of the shell is the same as command
line usage for Rambo, and is demonstrated below:

R Typeface# SymSet [ITtypeface _dif [/Ssymbol_set _din
[/Foutput_din [/Ooutput _file] [/U]

The Rambo shell program does not function with Type Di-
rector 1.0 (the TYPEFACE.TD file format is different).

The test files included with the Rambo packet include
MSL.TXT, QMSL.TXT, and DINGBATS.TXT. These files
may be used to test unbound scalable fonts that you create.
MSL.TXT and QMSL.TXT are designed to print an un-
bound font that does not have any Dingbats characters.
MSL.TXT prints a 10-page listing of characters and their de-
scriptions. QMSL.TXT prints the same characters as
MSL.TXT, but omits the descriptions, and is only 3 pages
long.

To download and test an unbound scalable font, do the fol-
lowing steps:

1. Send an Ec*c1@@D to set the font ID to 100.

2. Type COPY /B UNBPCLEO.PCL LPT1 to download the
unbound scalable font.

3. Send an Ec*c5F to make the font permanent.

4. Type COPY /B MSL.TXT LPT1 to print the test file.

To print the DINGBATS.TXT test file:
1. Create an unbound ITC Zapf Dingbats scalable font.
2. Send an Ec*c19@D to set the font ID to 100.

3. Download the unbound ITC Zapf Dingbats font using
COPY /B.

4. Send an Ec*c5F to make the font permanent.

5. Use the binary copy command (COPY /B) to copy
TDD1.PCL, TDD2.PCL, TDD3.PCL and TDDV.PCL to
LPT1. (These are user-defined symbol sets needed to
print dingbats.)

6. Use the binary copy command to download the DING-
BATS.TXT file (COPY /B DINGBATS.TXT LPT1).

Using Rambo C-19

Using the BUILDSYM Ultility

Contents

Introduction. D-1
The BUILDSYMKit.......... ..., D-1
How Does BUILDSYM Work? D-2
Using the Correct Character Numbers.......... D-3
Converting to MSL Numbers. D4
Using BUILDSYMt D-5
infile D-5
outfile D-5
Creating a Symbol Set Definition File (SYM Files) .. D-6
The .SYM Parameters D-8
/PCLnum/PCLchar......................... D-8
RYPe. oo D-8
Andex. . ..ot D-8
fMirstcode. D-9
Mastcode....... ..., D-9
frequirements it D-9
/symbols D-10

Introduction

Note l'ﬂ

All PCL 5 Laserdet printers have many internal symbol
sets that can be used with any of the internal scalable fonts
or downloaded unbound fonts. The HP Laserdet IIIP and
LaserdJet 4 printers have the ability to add even more sym-
bol set selections. If none of the internal symbol sets are
suitable for the desired task, others can be added. These ad-
ditions can be downloaded to the printer, much like a soft
font or User-Defined pattern. Once in the HP LaserdJet IITP
or LaserdJet 4 printer, these soft symbol sets can be used
with scalable typefaces just like any other symbol set.

The BUILDSYM utility discussed in this chapter is pro-
vided for developers to use in creating downloadable symbol
sets for the LaserdJet IIIP/4 printers.

For those wishing to bypass the use of BUILDSYM, the
PCL 5 printer language commands that support User-
Defined Symbol Sets are discussed in detail in the PCL 5
Printer Language Technical Reference Manual.

The BUILDSYM Kit

The following BUILDSYM files are included on one of the
HP-supplied disks:

A2BIN.C Converts the file CG-MSL.EXH from
ASCII to a binary format

A2BIN.EXE The executable ASCII-to-binary converter

A2BIN.MAK Make file for A2BIN.EXE

BUILDSYM.C Reads the .SYM file and generates the

PCL code for a downloadable symbol set

BUILDSYM.EXE The executable downloadable symbol set
generator utility

BUILDSYM.MAK Make file for BUILDSYM.EXE

Using BUILDSYM D-1

CG_HP.DOC List of CG numbers and their corre-
sponding HP_MSL numbers

HP_CG.DOC List of HP_MSL numbers and their corre-
sponding CG numbers
CG2HP.C Converts a .SYM file that has Agfa (CG)

numbers to one containing HP Master
Symbol List (HP MSL) numbers

CG2HP.EXE The executable CG-to-HP MSL symbol
file converter
CG2HP.MAK Make file for CG2HP.EXE
CG-MSL.BIN The binary version of CG-MSL.EXH read
in by READCGMap in MAPPING.C
CG-MSL.EXH An ASCII table of CG numbers and their
corresponding HP numbers
MAPPING.C Reads in CG-MSL.BIN and stores it into
an array
TD??.SYM Type Director Symbol Set files
|
How Does BUILDSYM inputs a symbol set definition file ((SYM file)
BUILDSYM Work? which contains symbol set information and outputs PCL

code that allows the symbol set to be downloaded to the HP
LaserdJet I1IP/4 printers. Symbol set definition files may be
created by modifying existing Type Director symbol set defi-
nition files, such as the TDxx.SYM files located on one of
the HP-supplied disks, or in the Type Director \TD\SYM-
BOLS directory. They may also be created “from scratch.”
Either way, to create a symbol set definition file, follow the
guidelines in Creating a Symbol Set Definition File later in
this appendix.

D-2 Using BUILDSYM

Using the Correct
Character Numbers

Symbol Set
Definition File
(.SYM File)

BUILDSYM

v

Downloadable
Symbol Set File

Figure D-1. BUILDSYM Operation

Character location numbers within the symbol set defini-
tion file can be specified using one of two character number-
ing schemes:

* Agfa (CG) numbers
+ HP MSL numbers

If you are modifying a Type Director symbol set, which con-
tains Agfa character numbers, you will probably want to
use Agfa numbers in the .SYM file you are creating. On the
other hand, if you are starting from scratch, you may want
to use the HP MSL numbers or convert existing Agfa num-
bers to HP MSL numbers.

If you are using Agfa character numbers (CG numbers), you
must either convert the Agfa character numbers to HP MSL
numbers using the CG2HP.EXE utility, or the file CG-
MSL.BIN file must be resident in the current directory
when BUILDSYM is run, which allows BUILDSYM to con-
vert the Agfa numbers to HP MSL numbers. All download-

Using BUILDSYM D-3

Converting to
MSL Numbers

infile
outfile

Note l'ﬂ

D-4 Using BUILDSYM

able symbol sets must contain HP MSL numbers in order to
be used by the printer. The section below explains how to
convert to HP MSL numbers using the CG2HP.EXE utility.

If your symbol set definition file (.SYM) file contains HP
MSL character numbers, the character numbers will not re-
quire any conversion. The BUILDSYM utility will use the
numbers as they are.

As mentioned above, if the .SYM file you are using contains
Agfa numbers (as do symbol set files from Type Director),
BUILDSYM automatically converts these to HP MSL num-
bers, as long as the CG-MSL.BIN file is resident in the cur-
rent directory when BUILDSYM is run.

An alternative method of converting character numbers to
HP MSL format is the CG2HP.EXE utility provided with
the BUILDSYM kit. This utility is helpful to those develop-
ers that only wish to modify a few characters in an existing
Type Director symbol set.

CG2HP.EXE Syntax

To convert character numbers in a symbol set from Agfa
numbers to HP MSL numbers, the CG2HP.EXE utility is
used as follows:

CG2HP [infile [outfile]]

The infile parameter is the .SYM file containing Agfa
numbers.

The outfile parameter is the .SYM file that will be written
containing the HP MSL numbers.

The outfile name must be different than the infile name.

Using BUILDSYM

infile

outfile

Example:
Using BUILDSYM

The command format for the BUILDSYM utility is listed be-
low:

BUILDSYM [infile [outfile]]

The infile parameter is the input .SYM file (symbol set defi-
nition file). Creating a symbol set definition file is discussed
in detail later in this appendix under “Creating a Symbol
Set Definition (.SYM) File.”

When using a .SYM file that does not contain HP MSL charac-
ter numbers, the file CG-MSL.BIN must be in the current direc-
tory so that the Agfa character numbers may be converted to
HP MSL numbers.

The outfile parameter indicates the name of the PCL sym-
bol set file that BUILDSYM creates. Any legal DOS file
name is acceptable. For example, the file name could be in
the format FILExx.DSS, where xx represents the two-char-
acter selection value and DSS represents downloadable
symbol set. Using this sample format, the Roman-8 down-
loadable symbol set file would be named FILERS8.DSS.

A sample command line using BUILDSYM is as follows:

BUILDSYM TDxy.SYM OUTPUTXxy.DSS

Where TDxy.SYM is the symbol set definition file and
OUTPUTxy.DSS is the downloadable symbol set created
with BUILDSYM.

Using BUILDSYM D-5

Creating a Symbol
Set Definition File
(.SYM Files)

This section describes the format of the symbol set defini-
tion files. It serves as a reference for when you modify exist-
ing Type Director .SYM files or if you wish to create a .SYM

file from scratch.

Symbol set definition files consist of several keyword pa-
rameters, such as /type, Zindex, /PCL char, etc., each de-
scribing a particular feature of the .SYM file (see Table D-1
below). The .SYM files are formatted as ASCII files and
have the following characteristics:

» Each parameter must appear on a separate line.

¢ The parameters appear in the form:
/parameter name = parameter value.

» At least one space must separate the equal sign (=) from
the parameter value and the parameter name.

e All text on a line after a semicolon (;) is ignored and may
be used for comments.

* The parameter values are not case-sensitive (except for

/PCL char).

Table D-1 lists the symbol set definition file parameters.
The parameters are discussed in more detail following the
sample .SYM file on the next page.

Table D-1. Symbol Set Definition Value Parameters

Parameter
/PCL num =
/PCL char =
type =
/index =
/first code =
/last code =
/requirements =
/symbols =
/end =

D-6 Using BUILDSYM

Default
0
@
2
AGFA CG Nos.
0
255
0x0000000000000000
N/A
N/A

Range Comments
0-63 Optional
ASCII 65 - 86 Optional
0,1,2 Optional
HPMSL or no entry Optional
0- 255 Optional
0- 255 Optional
See Description Optional
N/A Required
N/A Required

Example: An example of the symbol definition file for the US ASCII
Sample .SYM File symbol set follows:

; symbol definition file for US ASCII

Itype=0 ; characters 32-127 are printable

/index = HPMSL ; character values given in HP MSL order
/PCLnum =0 ;0U is the symbol set selection parameter
/PCLchar=U ;0U is the symbol set selection parameter
ffirst code = 32 ; first value defined in symbol table

/last code = 127 ; last value defined in symbol table

/requirements = 0x8000000000000000 ; standard Latin
complement required

/symbols =

32 0 ; space code, or printable thin space
33 1 ; exclamation mark

34 2 ; neutral double quote

35 3 ; number sign

36 4 ; dollar sign

126 96 ; one wavy line approximate

127 97 ; medium shading character

/end

Using BUILDSYM D-7

The .SYM Parameters

/PCL num

/PCL char

D-8 Using BUILDSYM

/type

/index

The following discussion describes the .SYM file parame-
ters in more detail.

The /PCL num and /PCL char parameters are the PCL val-
ues that will be used to select the symbol set once it is down-
loaded. For example, the PCL selection value for the
Roman-8 symbol set is 8U, so the TDR8.SYM file (Roman-8
symbol set definition file) will contain the parameters /PCL
num = 8 and /PCL char = U.

The valid range of values for /PCL num is 0 - 63. The valid
range of values for /PCL char is A - V (ASCII 65 - 86)—this
is the only case-sensitive parameter in a .SYM file.

The type parameter determines which characters in the
symbol set are printable:

Value Symbol Set Type
0 7-bit (characters 32 - 127 decimal are printable)

1 8-bit (characters 32 - 127 and 160 to 255 decimal
are printable)

2 PC-8 (All character codes are printable except 0, 7,
-15, and 27 decimal)

The /index parameter is a flag stating whether the values
in the following symbol table are Agfa (CG) character num-
bers or Hewlett-Packard Master Symbol List (HP MSL)
character numbers.

o Ifthe value of Zindex is hpmsl, then the numbers that
follow are interpreted as HP MSL character numbers.

+ Ifthe value of /index is anything other than hpmsl, or it
is not defined in the .SYM file, then the numbers that
follow are interpreted as Agfa character numbers. If the
value for /Zindex is not hpmsl, the CG-MSL.BIN file must
be resident in the current directory when BUILDSYM is
run.

/first code

/last code

Note l'ﬂ

/requirements

The /first code parameter is the decimal value of the first
defined symbol of the symbol set. The value range is 0 to
255.

The /last code parameter is the decimal value of the last de-
fined symbol of the symbol set. The value range is 0 to 255.

The /last code value must be greater than or equal to /first
code.

The /requirements parameter is a 16-digit hexadecimal (64
bit) value that limits the type of fonts that are compatible
with the defined symbol set. If this value is 0, the character
set can be used with any character complement. The bits de-
fined as of the publication date are:

Bitsetto 1 Character set requires:
63 Latin complement (as Roman-8, ECMA
94 Latin 1, ASCll,etc.)
62 Eastern European Latin characters (as
ECMA 94 Latin 2)
61 Turkish characters
57 Cyrillic characters for Russian, Bulgarian,

Ukrainian, Byelorussian, Macedonian
and Serbo-Croatian

54 Arabic characters

51 Greek characters

48 Hebrew characters

34 Math characters of Math-8, PS Math and

Ventura Math sets

33 Semi-graphic characters of the PC-8 and
PC-8 DIN sets

32 ITC Zapf Dingbats complement

Using BUILDSYM D-9

/symbols

D-10 Using BUILDSYM

/end

An example of values for the /requirements fields of a PC-8-
like symbol set would be as follows:

0x8000000200000000 (character set requires both Latin
and PC-semi-graphic characters).

The /symbols parameter indicates the start of the symbol
table. The symbol table is used to map the character codes
(of the symbol set being defined) to their character num-
bers. Within the symbol table, each line represents a sym-
bol in the symbol set. The table may have up to 256 entries
whose defined values are from 0 to 255. The format of the
symbol table is as follows:

/symbols =

<decimal table entry number, 0-255> <Agfa CG or HP MSL
number, as defined by Zindex>

<decimal table entry number, 0-255> <Agfa CG or HP MSL
number, as defined by Zindex>

/end

The /end parameter indicates the end of the symbol table
and must be the last line in the file.

Using the FASST Utility

Contents
OVEIVIEW . o vttt et e ettt e e E-1
The FASSTKitt E-1
File Formats E-2
FASST ShellUsage., E-3
FASST Integration E-5
Program Structure.......................... E-5
Comparing the Compression Modes E-5
Major Functions E-6
pelwrite() E-6
mode O PCL().......... .. i, E-7
mode 0.2 PCL()........ ..., E-7
mode 0.2 3 PCL()......... E-7
CompressLd3().o .. E-7
Ergs PCL() ... i E-7
CompressErgs()........... E-8
choose_mode() i, E-8
Mode30ut()cvii i E-8
Mode20ut() ... E-9
Modifyingthe Code. E-9
FASSTDataSize E-10
FASST Code Sizeccivioa.. E-10
TestingData E-11
TestingResults............................ E-12

Overview The FASST (Future Adaptive Smart Switching Technique)
utility is designed to help application programmers opti-
mize the various compression methods that are available on
HP Laserdet printers. The utility uses an intelligent algo-
rithm to decide a good compression method for each row of
raster data.

The FASST Shell (FASST.EXE) is supplied as an example of
how a software application would interface to the intelli-
gent compression routines in the FASST code. The shell
reads an uncompressed PCL raster data file, converts it to a
binary raster file stripped of the PCL commands, and
passes it to the compression routine in 64K blocks.

The FASST Kit The following files are included on the HP-supplied disks:

BINS.ZIP Graphics files used for testing (com-
pressed using PK-ZIP)

COMP.C Contains decision algorithm and com-
pression routines

FASST.C Sample shell program to show how to
call library routine

FASST.EXE Compiled shell program

FASST.MAK Make file for the example program

LISVERGS.C Compression routine specific to adaptive

compression (LaserJet 11IP/4 only)

MDO023PCL.C Specific routine for printers using modes
2 & 3 (LaserJet LII/IID/ISI)

MDO2PCL.C Specific routine for printers using
mode 2 (LaserJet IIP)

Using FASST E-1

MDOPCL.C Specific routine for printers not using
graphic compression

MODE2.ASM Assembly code for mode 2 compression

PCL2BIN.C Converts mode 0 PCL to .BIN format

PCL2BIN.EXE Compiled PCL-to-.BIN converter

PCLWRITE.C Chooses compression routines based on
printer model

RAST2PCL.H Include file for FASST routines

File Formats

E-2 Using FASST

The FASST shell reads a binary raster file that is created
using PCL2BIN.EXE. This raster file has the form:

<row length> <raster data> <row length> <raster data> ...
<row length> <raster data>

The <row length> is a word with the high-order byte first.
The <raster data> is a row of data that is <row length>
bytes long. If <row length> is 0, it is immediately followed
by another <row length>. As the FASST shell reads in each
64K block of the file, it is stored in memory in the same for-
mat as it is on disk. Additionally, OxFFFF is appended to
the end of the data after the last raster row to indicate the
end of the block.

The .BIN format described above was chosen since each soft-
ware developer has a different method of storing raster
data. If you wish to use the FASST shell to compress raster
graphics, you must either convert the graphics into the

.BIN form using PCL2BIN.EXE or write your own utility to
convert from your file format to the .BIN format.

For example, to convert a .TIF file to the .BIN format, one
must first convert the .TIF file to an uncompressed PCL file
using one of many available file conversion programs. The
resulting PCL file can be converted to a .BIN file by run-
ning PCL2BIN.EXE as follows (see Figure E-1):

PCL2BIN GRAPHIC.PCL GRAPHIC.BIN

PCL2BIN.EXE can also be run without command line argu-
ments, in which case it will prompt the user for file names.

Uncompressed
PCL raster file
(Mode 0)

v

PCL2BIN.EXE

File in .BIN ~

»| FAAST shell Compressed PCL
Format

Raster File

v

v

Figure E-1. Using the FASST Shell

FASST Shell Usage

The FASST shell can be used in two ways: interactively or
through the command line. To use FASST in the interactive
mode, simple start FASST.EXE without any command line
arguments, for example:

FASST

The command line arguments for the shell are in the follow-
ing form:

FASST [input filename[output filename[printer model]]]
Where:
Input filename is the file name of the .BIN file.

Output filename can be either a disk file or a device such as
LPT1. If you do choose a device such as LPT1 as an output
file, leave off the trailing colon (that is, use LPT1 instead of
LPT1.).

Using FASST E-3

Printer model is the 1- to 4-character abbreviation for the
target printer. The printer abbreviations are as shown in
the following table.

Table E-1. Abbreviations for the Printer Model

Abbreviation Printer
I LaserJet
I+ LaserJet PLUS
500 LaserJet 500 PLUS

I LaserJet Series Il

P LaserJet lIP
1D LaserJet [ID
1l LaserJet Il
1]} LaserJet [IID
ELI LaserJet IIISi
ROY LaserJet IlIP
ROY LaserJet 4

If any of the command-line options are invalid or not en-
tered, the FASST shell will interactively prompt the user
for the data. For example, if the input file does not exist,
the shell will prompt the user for another input filename.

Note % The FASST shell can be aborted at any time by pressing
CTRL-BREAK.

E-4 Using FASST

FASST Integration

Program Structure

Comparing the
Compression Modes

The following paragraphs are written to assist developers
in integrating FASST into their own applications. Each de-
veloper will probably desire to customize the FASST code to
accommodate their own method of processing raster graph-
ics. This guide explains the code in enough detail to facili-
tate code modifications.

Two independent programs are provided in this utility.

» PCL2BIN.EXE converts an uncompressed PCL raster
graphics file into the .BIN raster format.

» FASST.EXE is a sample application that calls the
intelligent compression routines.

The PCL2BIN.EXE program operates as discussed in the
“File Formats” discussion at the beginning of this appendix.
The discussion below summarizes the differences between
the various compression modes, followed by the operation of
the intelligent compression algorithms in the FASST shell.

Compression Mode 0

In compression mode 0, no compression takes place. Each
bit of raster data exactly corresponds to a dot on the printed
page. In mode 0, it takes approximately 320 bytes to send a
full 8.5-inch row of 300 dpi raster data.

Compression Mode 1

Compression mode 1 is also called Run Length Encoding.
Data is sent in byte pairs. The first byte is a repetition
count for the data in the second byte. This mode works well
for long strings of repeated bytes, but if the data has sev-
eral literal (non-repeating) bytes, then the compressed size
is likely to be larger than the uncompressed size.

Using FASST E-5

Major Functions

E-6 Using FASST

pclwrite()

Compression Mode 2

Compression mode 2 is also known as TIFF (Tagged Image
File Format). The TIFF mode uses a control byte that is
sent before the raster data. This control byte indicates if the
following data is a repeating run, or a literal run. In this
way, mode 2 combines the features of modes 0 and 1.

Compression Mode 3

Compression mode 3, also called Delta Row Compression,
samples the current row of data and outputs to the printer
only those bytes that are different from the previous row.
Mode 3 compression is best-suited to compressing vertical
patterns that are repeated between rows.

Compression Mode 5

This mode is also called Adaptive Compression. Mode 5 is a
block encapsulation of all the previous modes. This mode
uses an escape sequence to notify the printer that a block of
up to 32K of data is coming. There is a control byte on each
line of data which tells the printer in which compression
mode the current line is printed. There are also control
bytes to tell the printer to repeat the last line “n” times and

({32

to print “n” blank rows.

The major functions of the FASST shell are described below:

pclwrite() is the root function of the intelligent compression
routines. This function simply calls the appropriate com-
pression routine based on the printer model chosen.
pclwrite() calls mode_0_pcl(), mode_0_2 PCL(),
mode 0 2 3 PCL()or Ergs_PCL(), depending on what the
target printer is.

mode_0 PCL()

mode_0 2 PCL()

mode 0 2 3 PCL()

CompressLJ3()

Ergs_PCL()

This function is for all Laserdet printers that do not support
raster compression, specifically the HP LaserdJet, LaserJet
PLUS, Laserdet 500 PLUS, Laserdet series II, Laserdet
IID, and Laserdet 2000 printers.

This function simply wraps PCL code around the raster
data that is passed to it.

This function is only for the Laserdet IIP printer, which sup-
ports compression modes 0, 1, and 2. Hewlett-Packard has
found that in most cases, mode 2 compression yields better
results than mode 1. Therefore, mode 1 is not included in
the FASST routines. Additionally, HP has found that mode

2 compression is usually better than no compression. There-
fore, as this function looks at each row, it performs a mode 2
compression, and then compares it to the uncompressed
row size. The function then writes the PCL code for the
mode with the best result.

The HP Laserdet III, ITID, and IIISi printers support com-
pression modes 0 through 3. This routine prepares any vari-
able length rows (if used) and calls compressLJ3() to
actually compress and output the raster data.

After being called by mode_0_2_3 PCL(), CompressLJ3()
will call choose_mode() to choose the best compression
method for this row. Then it compresses the data and out-
puts it to the specified stream.

The LaserdJet IITP and LaserdJet 4 printers support adaptive
compression (mode 5 compression), which reduces raster
data size by decreasing the amount of PCL code that is
needed to send it to the printer. The LaserdJet I1IP/4 print-
ers also perform decompression on-the-fly to reduce printer
memory requirements for large graphic images. This func-
tion is very similar to mode 0 2 3 PCL() except that it
writes out mode 5 PCL code for each raster row. Also note
that ERGS sends data in a raster block, which is limited in

Using FASST E-7

CompressErgs()

choose_mode()

Mode3Out()

E-8 Using FASST

size to 32K, so this function will automatically split the in-
put into multiple blocks if it exceeds 32K. Keep in mind
that adaptive compression will work best with output
blocks being as close to 32K as possible. Therefore, you
should pass Ergs_PCL() raster data in chunks as large as
possible so that when it calls OutputMode5Block() to out-
put the data, it will be sending large blocks.

In this function, choose_mode() decides which compression
mode will best compress a given line of data. Then the con-
trol bytes are inserted, followed by the data in the memory
area passed in the function call. The data is not sent out to
the printer at this time because this function tries to buffer
a block that is close to 32K to maximize efficiency for the
Laserdet I1IP/4 printers. Ergs_PCL() will output the data
when the buffer is full.

This function uses a heuristic algorithm to choose either
mode 0, 2, or 3 as the best compression method for each
row. Hewlett-Packard’s tests show that choose_mode() se-
lects the optimal compression mode almost every time. The
algorithm essentially counts the number of bytes that are
duplicated from the previous row, and the number of bytes
that are repeated within the row. The bytes that are dupli-
cated from the previous row are best for mode 3 compres-
sion. Bytes that are repeated within the row are good for
mode 2 compression.

Testing has shown that if either of these values is greater
than one-third of the uncompressed row size, compression
is worthwhile. This function picks the mode whose byte
count exceeds the threshold. If both counters exceed the
threshold, the larger is chosen.

The actual mode 3 compression of row data is done in this
function. Additionally, the current row’s data is copied into
the memory location of the last row’s data so that the call-
ing program doesn’t have to do this.

Mode20ut()

Modifying the Code

Mode 2 compression is performed in this function. Since the
last row is not passed to this function, it does not copy the
current row into the last row.

Since many applications use a great deal of available mem-
ory, the FASST routines are designed to accept data in 64K
blocks. If your application can access enough free memory
to use larger blocks, simply change the value of

MAX_ BLOCK in RAST2PCL.H. However, in C you cannot
address a data array larger than 64K with a far pointer, so
if you do increase MAX_BLOCK to more than 64K, you
need to use huge pointers for the data. To do this, change
the definition of PBYTE in RAST2PCL.H from a “far”
pointer to a “huge” pointer.

If your applications will be calling pclwrite() with variable
length data rows, then you should make sure you have set
RAGGEDROWS in RAST2PCL.H to 1 (true). Otherwise, set
RAGGEDROWS to 0 (false).

Included with the FASST utility is a file called
MODE2.ASM which does a mode 2 compression. This can
be integrated into FASST if additional speed is desired.

Using FASST E-9

FASST Data Size

FASST Code Size

E-10 Using FASST

The following table shows the amount of additional memory
allocated by the FASST code.

Compression

Ragged Rows

Uniform Length Rows

Method

ERGS 0,2 & 3| 2 (longest row longest row length + 32K
length) + 32K

0,2,&3 3 (longest row 2 (longest row length)
length)

0&2 longest row longest row length
length

0 none none

The following table shows the expected increase in applica-
tion code size (based on Microsoft C 6.0), depending on com-
pression method.

Compression

Ragged Rows

Uniform Length Rows

Method
ERGS 0, 2, & 3 | 1050 bytes 538 bytes
0,2,&3 1062 bytes 550 bytes
0&2 562 bytes 562 bytes
0 530 bytes 530 bytes

Testing Data

Testing Methods

HP.BIN

CAT.BIN

DESI.BIN

SPRD.BIN
EIN.BIN

SELF.BIN

The FASST utility has been tested on many different types
of graphics files to maximize compression in most cases.
The results of some of this testing are discussed below.

FASST was tested on six different binary graphics files
consisting of the following scanned images (these image
files are included on one of the HP-supplied disks in the
BINS.ZIP file):

A small Hewlett-Packard logo (.3 by 1.7 inches).

A full-page with a small photo (2.5 by 3.4 inches) and sev-
eral small black and gray boxes in different areas on the
page. In total, the graphics occupy about 20% of the page,
but are spread out so that there is plenty of white space be-
tween the photo and the various blocks.

An instruction sheet consisting of a full page of 10-point
text, a logo (about 1.25 by 1.5 inches) and a graphic (brush-
stroked letters) (about 3.9 by 1 inches).

A full-page, 4-column spreadsheet, with 1-point rules be-
tween each column and between each row (every .2 inches).

A large medium-contrast portrait (7.75 by 8 inches) contain-
ing mostly gray shades (not much white or black).

An HP Laserdet self test page containing a small bar chart
(2 by 2.5 inches), a small pie chart (2 by 2.4 inches), text,
and a border with various shading patterns and gray shades.

For the test, the FASST shell was stripped of the calls to
pclwrite() to determine the overhead asssociated with read-
ing each of the six graphics from the disk. The overhead
time was subtracted from the test results to see the time
spent compressing the graphics. In addition, the test results
were written to files on a virtual disk in memory to mini-
mize the time spent writing to a hard disk.

Using FASST E-11

Testing Results

Tests were conducted using an HP Vectra RS/25¢ (25MHz
386) with 8 Mbytes RAM and a 100-Mbyte hard disk. The
HP-supplied version of MS-DOS 4.01 was used, with no
drivers loaded except the RAM disk and the SHARE utility.
(The SHARE utility is required by HP DOS on large hard-
disk partitions.) The RAM disk used was RAMDRIVE.SYS,
which is included with Microsoft Windows 3.0.

The following compression statistics show that there is a
cost associated with compressing the graphics data. In fact,
with the six test cases used, there was an average 39% in-
crease in the amount of time required to prepare a file for
adaptive compression over simply encapsulating the image
in mode 0 compression (no compression). The cost, however,
is minor in comparison to the 70% average reduction in out-
put data size. The following graph illustrates the file sizes
that are achieved through compression.

900 T
800 T
700 T

A~

»w oo ~<m

600 | > Modes 0, 2 & 3
500 T A
2

400 | odes 0 &
300 T <> Mode 0
2007

! X X
100 — X

Compressed File Sizes

é B ERGS (Mode 5)

0
HP.BIN
1

CATBIN
2

DESIBIN SPRD.BIN EIN.BIN SELF.BIN
3 4 5 6

Files (in order of increasing size)

Figure E-2. The Effect of Compression on File Size

E-12 Using FASST

The following graph compares the time it takes to compress
various graphics files using the different compression
methods.

Raster Compression Times

B ERGS (Mode 5)
B Modes 0, 2 & 3
Modes 0 & 2

fH Mode 0

"has3000DOW

HP.BIN CAT.BIN DESI.BIN SPRD.BIN EIN.BIN SELF.BIN
1 2 3 4 5 6

Raster Files (in order of increasing size)

Figure E-3. Comparitive Compression Times

Using FASST E-13

Using the SRTool Utility

Contents

Introduction. F-1
Installing and Running SRTool F-2
Initialization F-2
Configuring SRTool Manually................. F-3
Automatic Configuration..................... F-3
The User Interface F-5
The SRTool Display Windows F-5
Error Handling. F-6
Using Macros to Send Escape Sequences. F-7
Using the DOS Command Line Within SRTool . .. F-7
Using Scopy Instead of DOS COPY F-7
The SRTool Menus F-8
PCL Status Readback. F-10
PJL Status Readback F-13
PCL Command Macros.cvu... F-14
PJL Command Macros..............ccovuvvnn... F-17
Optionsttt F-18
Files.o F-18
Setting the Carriage Return F-23
Break Points............... F-23
Checking the Input Buffer................... F-24
DataPacing F-24
Displaying Data Received from the Printer. F-24
Displaying Data Sent to the Printer........... F-24
Clearing the Windows F-24
ByteCounters............................. F-25

Displaying Line Status F-25

Introduction

SRTool
Requirements

Chapter Overview

The status readback tool (SRTool) is a software utility used
to query the status of a printer and to receive and record
the returned printer status. With SRTool, queries may be
made using either the keyboard or an input file.

SRTool runs on IBM-compatible computers and requires
170K of RAM to operate. No special cables are required for
communications with the printer.

This chapter is organized as follows:

* Installing and Running SRTool—This section describes
how to install SRTool.

 Initialization—The Initialization section explains the
parameters that must be set for SRTool to run, and the
two ways in which they may be set.

* The User Interface—The User Interface section describes
the windows that appear on the screen during execution
and explains how the pull-down menus at the top of the
screen are used.

+ PCL Status Readback—The PCL Status Readback
section lists the PCL commands that are implemented in
SRTool and gives a brief description of each.

+ PJL Status Readback—This section lists the PJL Status
Readback commands that are implemented in SRTool
and briefly describes each command.

* PCL Command Macros—The PCL Command Macros
section lists and gives a brief description of the PCL
command macros and how they are used in SRTool.

e Options—The Options section describes the choices
found in the SRTool Options menu.

Using SRTool F-1

Installing and Follow the instructions below to install and run SRTool.
Running SRTool

Installing SRTool
1. Create a directory on your hard disk (such as C:\\SRTool).

2. Copy all of the files from the SRTool disk into the new
directory (for example, COPY A:*.* CASRTOOL).

Running SRTool

The SRTool program file is SRTOOL.EXE. Run SRTool by
getting into the directory where SRTool is located, typing
SRTOOl and pressing the Enter key. See the “Initialization”
discussion below to configure SRTool to run on your system.

-
Initialization Before SRTool may begin communications with the printer,
it requires the following information:

* Interface type (serial, bidirectional parallel, or standard
parallel)

* Port number
* Baud rate (serial interfaces only)
» Flow control (serial interfaces only)

You have a choice of entering the configuration information
each time you load SRTool, or you may use a setup

file for automatic configuration. Both options are described
in the following paragraphs.

F-2 Using SRTool

Configuring SRTool
Manually

Note l'a

Automatic
Configuration

When you run SRTool without a setup file (SETUP.SRT),
the program immediately enters an initialization phase
upon execution. A series of configuration menus prompts
you for the options listed above. Configure the tool by mak-
ing a selection in each menu that appears.

When configuring I/O Type, select AFPP when using the Bi-
Tronics bidirectional parallel interface. If you wish to use
status readback, you must select AFPP as the I/O type. You
do not need a special cable or interface card in your com-
puter. The BiTronics port in the printer operates well with a
standard parallel interface card in the host and a standard
parallel cable.

To avoid going through the configuration menus, you can
configure SRTool automatically using a setup file
(SETUPSRT). Each time you load SRTool, it automatically
looks for SETUP.SRT either in the directory from which you
run SRTool or in the directory specified in your AUTO-
EXEC.BAT file. (You may run SRTool from any directory by
adding to your PATH statement the directory where
SRTOOL.EXE is located, and by adding the following line
to your AUTOEXEC.BAT file:

SET SRTDIR=<path to SETUP.SRT file>
For example: SET SRTDIR=C:\SRTOOL

The SETUP.SRT file doesn’t exist until you create one. This
file is required in order to automatically configure SRTool.
The SETUP.SRT file format is structured as follows:

<Mouse Support>

<I/O Type>

<Port Number>

<Baud Rate>

<Hardware Flow Control>

<Buffer Size>

Using SRTool F-3

The possible values for each option are listed in the table be-

low:
Option Value Description
Mouse Support 0 No Mouse Support
1 Mouse Support
I/0 Type 0 BiTronics Parallel
1 Serial
2 Parallel
(non-BiTronics)
Port Number 1to3 For Parallel I/Os
lto4 For Serial I/Os
Baud Rate 2 300
3 600
4 1200
5 2400
6 4800
7 9600
8 19200
9 38400
10 57600
Hardware Flow 0 No Flow Control
(CSoer;Ez(l)l Only) Flow Control
Buffer Size Desired
(Serial Only) Buffer Size

A . .
Note llﬂ SRTool always sets the parity to none, number of data bits
to eight, and number of stop bits to one.

F-4 Using SRTool

Creating the SETUP.SRT File

Create the SETUP.SRT file by typing the value for each op-
tion, followed by a carriage return (<CR>) and line feed
(<LF>). For example, the following ASCII file can be used to

configure SRTool for mouse support and bidirectional paral-
lel I/O on LPT1:

1<CR><LF>
0<CR><LF>
1 <CR><LF>

The User Interface

The SRTool While SRTool is running, two windows are continually dis-
Display Windows played on the screen. The left window, labeled “Send to
Printer,” is the input window. This window is used to type
data that you want sent to the printer. The input window
prompt is “>>”.

The right window, labeled “Received from Printer,” is the
window in which the data received from the printer is

displayed.
pCl status readback pJl status readback Options Quit VZ.31
——=send to Printer Received from Printer

>

Using SRTool F-5

Note l'a

Error Handling

F-6 Using SRTool

Every character that is sent to or received from the printer
is displayed in one of these windows, unless the data is sent
to the printer as a result of a DOS command. Control char-
acters are displayed in a readable format (that is, a line
feed is displayed as <LF>, spaces are displayed as <SP>,
and backspaces as <BS> so that you are able to differenti-
ate between blank space and actual spaces that are sent or
received). Any blank space in either of the windows appears
after a carriage return, line feed, or form feed, or when
there is not enough room on a line for a control character.
Blank space does not represent data sent to or received
from the printer.

If SRTool receives a character from the printer that it
doesn’t recognize, it displays the character’s ASCII code in
hexadecimal.

Characters sent to the printer from an input file, and es-
cape sequences chosen from a pull-down menu are dis-
played in the input window.

Characters are sent to the printer as soon as they are
typed; they are not buffered. You cannot, therefore, back-
space over a typing error. If the backspace key is pressed, a
<BS> is displayed on the screen and a backspace character
is sent to the printer. This does not apply to PCL macros or
DOS commands.

If an error occurs during execution, a window appears in
the center of the screen, briefly explains the error, and tells
you to press a key to continue. If the error is fatal (that is, if
the port cannot be initialized) the tool is exited after you
press any key. If the error is not fatal, the tool resumes exe-
cution after a key is pressed.

Using Macros to
Send Escape
Sequences

Using the DOS
Command Line from
Within SRTool

Using Scopy Instead
of the DOS COPY
Command

To help you send escape sequences to the printer, several
PCL macros have been implemented. The PCL macros are
used by typing a dot as the first character in the line, fol-
lowed by the macro name, and ending with a carriage re-
turn. (see “PCL Command Macros” later in this chapter).

The macro is erased from the input window when you

press Enter and is replaced with its escape sequence. (If
you would like to send a period character (.) to the printer,
place two periods in succession. Only one of them will be
sent to the printer.) PCL macros can also be run from an in-
put file (see the “Input Files” portion of the Options menu
discussion).

SRTool provides you with the capability of running DOS
commands from inside the tool. To execute a DOS command
without exiting SRTool, type a dollar sign followed by the
DOS command (at the input window prompt), and press the
Enter key. For example:

$COPY C:ATEST.DOC PRN:

When you run a DOS command this way, the screen clears
first and then the command is executed. You are then
prompted to press a key to return to the tool. After you
press a key, the SRTool display is restored.

If you use the DOS COPY command to download a font,
macro or other type of file that is large enough to fill the
printer’s buffer, or if the printer is off-line, the tool displays
an error message and prompts you to press a key to con-
tinue. SRTool has its own copy command, scopy, that
eliminates the need to monitor the tools progress. Scopy
performs the same function as the COPY command, but un-
like COPY, it waits for the printer to become ready for data
and then continues to send data, without prompting you to
press a key to continue. The syntax for scopy is:

$scopy <filename>

Using SRTool F-7

Note l'a

The SRTool Menus

F-8 Using SRTool

Scopy should only be used for serial transfer. It can be used
for parallel transfer, but the parallel transfer should be fast
enough that the buffer does not overfill.

Scopy performs a limited parsing of the input file; a car-
riage return is added to each line and any leading white
space is also removed. If you do not wish to have your input
file parsed, use the copy2 command in place of scopy.

A pull-down menu is displayed at the top of the SRTool
screen. The menu may be accessed by pressing either
F10 or the Alt key and pressing the capitalized letter in
the menu you wish to select. (For example, Alt-O for the
Options menu.) Alternatively, you can click the left mouse
button on the chosen menu selection.

| pCL status readback _____pJl status readback ______ Wgaflly I
Files
Set carriage return
Add break point
d to Print i Remove break point
bod Check input buffer

Pace off data

pace On data

Display printer data
display Inputfile data
clear Windows

Byte counters

display Line status

To move the highlight bar to a menu choice, you can use
either your arrow keys or press the capitalized letter in the
choice. To select a menu choice, first move the highlight bar
to the item you wish to select, then press the Enter key. To
leave the pull-down menu and return to your input window,
press the Esc key.

Selecting with the Mouse

You can also use a mouse to select menu items. Highlight
an item by clicking the left button on any item. Select the
item by double-clicking on the item.

The PCL Status Readback menu allows you to send PCL
status readback commands to the printer. When selecting
an item, you are always given a choice between all possiblii-
ties or a range if a value is required in a choice.

Likewise, the PJL Status Readback menu contains selected
PJL status readback commands. If a value is required when
you select a command, you are always given a choice be-
tween all possibilities or a range of values.

The choices in the Options menu include file management,
specifying the characters sent during a carriage return,
break points, options to toggle the displaying of data, set-
tings to tell the computer to ignore the data coming from
the printer or to tell the printer to quit sending data, and
counters to keep track of the number of bytes sent to and re-
ceived from the printer.

Exiting SRTool

When you want to exit SRTool, choose Quit from the menu
bar.

Using SRTool F-9

PCL Status The PCL Status Readback menu offers a choice of using pre-
Readback defined escape sequences or user-defined escape sequences.

The pre-defined escape sequences are:

Free Memory Space (Ec*s#M)

Description Returns the current amount of free
memory in the device (in bytes)

Value (#) Internal Memory Unit

Default Value 1

Range 1

Set Status Readback Location Type (Ec*s#T)

Description

Sets the status readback location
type to the specified value.

Value (#)

0

Invalid Location

Currently Selected

All Locations

Internal

Downloaded

Cartridge

GO (W [N

User-Installable ROM

Default Value

0

Range

Otob,7

F-10 Using SRTool

Set Status Readback Location Unit (Ec*s#U)

Description Sets the status readback location
unit to the specified value.
Value (#) 0 All Locations
1to Unit Number
32767
Default Value 0
Range 0 to 32767

Inquire Status Readback Entity (Ec*s#l)

Description Returns status information for all
entities of the specified type in the
current status readback location.
Value (#) 0 Font
1 Macro
2 User-Defined Pattern
3 Symbol Set

Default Value N/A

Range 0to3

Echo (Ec*s#X)

Description Echoes the parameter value back to
the host.

Value (#) Echo Value

Default Value 0

Range -32767 to 32767

Using SRTool F-11

User-Defined
Escape Sequences

F-12 Using SRTool

Note l'a

You may wish to have the escape sequences that you use
most frequently available in a pull-down menu. The user de-
fined escape sequences option allows you to specify those se-
quences and save them so that you can reuse them without
re-typing them. Once you create the user-defined escape se-
quence, you need only select the sequence you want to send
from the pull-down menu, instead of typing it again.

Creating a User-Defined Escape Sequence

To specify an escape sequence, select the edit option under
user defined escape sequences. A window appears in which
the escape sequences you have specified are listed. You can
edit an existing sequence by using the arrow keys to move
to the desired sequence and then making the necessary
changes.

To add a new sequence, use the down arrow key to move to
the first blank line in the window, then type in the new se-
quence. You can add unprintable characters using the Alt
key and the ASCII number on the numeric control panel.
For example, use Alt-27 for the escape character.

Editing is terminated when you press the Enter key. SRTool
allows you to specify up to ten escape sequences. Each se-
quence can contain as many as thirty characters.

SRTool displays most of the control characters in user-de-
fined sequences as blank spaces. The escape character is
displayed as a left-pointing arrow.

Sending a User-Defined Escape Sequence

To send a sequence that you have added to the list, select
send. A menu containing all of your sequences appears. Use
the arrow keys to move to the desired sequence, then press
the Enter key.

The escape sequences that you define are saved to a file
called USRDEF.SEQ when you exit the tool. If you have set
the SRTDIR in your AUTOEXEC.BAT file, the escape

sequences are stored in that specified directory; otherwise,
they are stored in your local directory. Each time SRTool be-
gins execution it reads this file so that you have access to
those escape sequences without retyping them.

PJL Status
Readback

The following PJL commands are implemented in SRTool:

. UEL
. ENTER

« RESET

. INITIALIZE
« SET

« DEFAULT

. INQUIRE

.« DINQUIRE

. INFO

« USTATUSOFF
- STMSG

« USTATUS

When any one of the above commands is selected, with the
exception of the UEL command, the following characters
are sent to the printer:

<LF>@PJL<SP> then the command, then <LF>.

For example, for the USTATUSOFF command, the follow-
ing is sent to the printer:

<LF>@PJL<SP>USTATUSOFF<LF>

The PJL status readback commands are accessed by press-
ing F10 and moving to the PJL. menu, pressing Alt-J, or by
clicking the left mouse button on PJL status readback. As
you add commands by selecting them this way, the left
window displays the characters that are actually sent to the

Using SRTool F-13

printer. Alternatively, PJL. commands can be sent by typing
them in the left window.

PCL Command This section lists the PCL macros that have been imple-
Macros mented in SRTool. They are used by typing the macro name
in the input window (including the period).
Functional Macro Name Escape Sequence Sent Description
Category

Font .delete_all_fonts Ec*cF Deletes all fonts.

Management .delete_temp_fonts Ec*c1F Deletes all temporary
fonts.

Font Selection | .default_fonts Ec(3@Ec)3@ Defaults the primary
and secondary fonts.

.default_primary E(3@ Defaults the primary
font.

.proportional Ec(s1P Selects proportional
spacing for the
primary font.

.stroke_weight_bold E(s3B Selects bold as the
primary stroke
weight.

.stroke_weight_light Ec(s-3B Selects light as the
primary stroke
weight.

.style_italic Ec(s1S Selects italic as the
primary font style.

Job Control .reset EE Resets the printer.
Miscellaneous | .reset_all EcEEc&f6XEc*cF Resets the printer,

then clears all the
fonts and macros.

F-14 Using SRTool

Functional Macro Name Escape Sequence Sent Description
Category
Page Control .clear_margins Ec9 Defaults the
horizontal margins.
Jandscape Ec&L10 Sets the logical page
orientation to
landscape.
.portrait Ec&L00 Sets the logical page
orientation to portrait.
.set_66_lines_per_page | Ec&f14cle7.64c66F Sets top margin 0.29"
from top of page,
vertical spacing to
6.28 lines per inch,
and page length to 66
lines per page.
Printing Text | .underline_on Ec&d#D Enables underlining.
.underline_off Ec&d@ Disables underlining.
Device Control | .flush 0 Ec&rfF Suspends processing
(Flush all complete of the input stream
pages) until all complete
pages currently in the
device have been
printed.
flush 1 Ec&rlF Suspends processing
(Flush all pages) of the input stream

until all pages,
including partial
pages, are printed.

Using SRTool F-15

Functional Macro Name Escape Sequence Sent Description
Category
Status .mem Ec*s1M Returns the current
Readback amount of free

memory in the
printer (in bytes)

Anquire_entity #1 #2 #3
(see Values #1, #2, #3
below.)

Ec*s#1TEc*s#2UEc*s#31

Sets the status
readback location
type to value 1, status
readback location
unit to value 2, and
returns status for all
entities of type value
3 in the current
status readback

location.
Value (#1) 0 (default) Invalid location
1 Currently selected
2 All locations
4 Downloaded
5 Cartridge
6 User-installable ROM
device
Value (#2) 0 (default) All
1 to 32767 Unit number
Value (#3) 0 Font
1 Macro
2 User-defined
pattern
3 Symbol Set

F-16 Using SRTool

PJL Command The table below contains the PJL macros that have been im-
Macros plemented in SRTool. These macros are used by typing the
macro name followed by a carriage return. The macro name
should begin in the first column of the line and include the
period. For example, to use the .variables macro you would
send:
.variables<CR>
The following table lists the PJL macros supplied with
SRTool.
Macro Name Command Sent Description
.uel Ec%-12345X Universal Exit Language
(UEL) Command
.config Ec%-12345X@PJL INFO CONFIG<LF> Returns a list of

configuration information

.status Ec%-12345X@PJL INFO USTATUS<LF> Returns the current
printer status
.variables Ec%-12345X@PJL INFO VARIABLES<LF> Returns the current

and possible values of
environmental and
personality-dependent
variables.

Using SRTool F-17

Options

Files

F-18 Using SRTool

The Options menu contains the following menu items:
» Files

* Set Carriage Return

* Add Break Point

* Remove Break Point

* Check Input Buffer

+ Pace Off Data

* Pace On Data

* Display Printer Data

* Display Inputfile Data
* Clear Windows

* Byte Counters

* Display Line Status

Each menu item is described in the following section.

The choices in the Files menu are:
* Input

e Output

* Record

Each menu choice is described in the following paragraphs.

Input Files

SRTool allows you to create an input file for testing PJL
and PCL commands. Once your file is created, you can tell
SRTool to read from it by selecting Input file from the Op-
tions menu. If you wish to send only one file, select Single.
A window appears at the top of the screen and you are
prompted for the file name.

As soon as you enter the filename, SRTool begins reading
from it. If you wish to send several files to the printer, select
Multiple and enter the path name when requested. You will
be given a list of files in that directory; press the Enter key

Note l'a

to select a file name. When you have selected all the files
you wish to send, press Enter next to Begin Sending, which
is the first line in the list of file names. The tool then sends
the files you specified to the printer.

When an input file is sent to the printer with either of these
options, SRTool assumes an 80-character line and checks
for special characters described in the following sections. If
you need to send a file with longer lines, such as raster
graphics data, and do not want the input lines manipulated
in order to find special characters, use scopy or copy?2 to
send the file.

» Using Loops in Input Files

One of the powerful features of input files is that they
allow you to use loops. These loops may be nested up to
three levels. When creating loops, you have three variables
to work with: i, j, and k.

When a variable is referenced it must begin with a “%”.
Variables may be used in controlling a loop and may be as-
signed values outside loops. The format of an assignment
statement is:

Y%<variable> = <value>

The format of a loop is:

MMor %<variable><start value>, <stop value> [, step value]
{loop body}

~endfor %<variable>

If the step value is omitted it defaults to 1.

The loop body can consist of DOS commands, PCL macros,
and any other data that you want to send to the printer.

Using SRTool F-19

F-20 Using SRTool

» Using Pauses in Input Files

If your application is receiving data from the printer so
quickly that you can’t read it all, you can add a break point
to your file. Insert a break point by placing a question mark
at the beginning of the line following the point at which you
would like SRTool to pause; this question mark is not sent
to the printer. (If a question mark is found anywhere else in
a line, however, it is sent to the printer.)

When SRTool encounters a question mark at the beginning
of a line, it quits sending data to the printer and a window
appears at the top of the screen. In this window you are
given a choice of browsing the printer window, continuing
with the input file, or quitting the input file. To make a se-
lection, press the letter of the choice you would like. If you
choose to browse the printer window, you will be able to use
the arrow keys to scroll the printer window up and down un-
til you are finished browsing. Then press the Esc key and
you will once again be given choices at the top of the screen.

If you choose to continue with the input file, SRTool quits
reading the input file and returns you to the Options menu.
If you decide later that you want to finish reading this file,
select Input file from the Options menu. SRTool will ask if
you would like to continue with the input file. When you
press Enter, the tool begins reading where it left off. If you
are finished with the file that is currently open and want to
begin reading from a new one, press N to abandon the cur-
rent file. In response, the tool asks you if you want to open
a new one. Press Enter and you will be prompted for the file
name. (See the “Break Points” discussion for another way to
pause files.)

* Using DOS Commands Within Input Files

DOS commands may be invoked from a file by adding a dol-
lar sign ($) immediately before the command name. The dol-
lar sign should be the first character on the line and a
carriage return should follow the command. While execut-
ing a DOS command, you will not see a DOS prompt; how

ever, the screen clears while it is executing the DOS com-
mand, so you may see a blank screen while the tool is read-
ing an input file. The screen is restored when the command
has finished executing.

» Using PCL Macros Within Input Files

PCL macros are executed from a file in the same way they
are used from the keyboard. Make sure the macro begins
the line and that there is a carriage return following it—oth-
erwise the tool has no way of knowing where the macro
ends. A period (.) encountered anywhere but the beginning
of a line is interpreted as a regular character and sent to
the printer.

» Specifying Output Files From Within Input Files

Output files can also be specified from an input file. The
syntax for this command is:

outfile = <filename>

All of the data received from the printer after this line has
been processed is sent to the specified file until the tool is
exited or another output file is named.

» Comments Within Input Files

If you wish to include comments in your input file that will
not be sent to the printer, begin the line with “.*”. This
causes any data on that line to be ignored.

e Sending Instructions to the Operator

When running interactive tests, it may be useful to give the
operator of the tests instructions via SRTool, rather than us-
ing a written procedure. To do this, begin your instructions
with the following line:

.comment

Place your instructions on the lines following the .comment,
then end them with the following line:

.end_comment

Using SRTool F-21

F-22 Using SRTool

For example:

.comment
This is a comment.
.end_comment

All lines between .comment and .end_comment are dis-
played in an instruction window within SRTool. No data is
sent to the printer while this window is displayed, although
any data that is received from the printer is processed.
When the operator is finished with the instructions, he/she
may press any key to continue processing the input file.

Output Files

At some point you will probably want to get a hard copy of
the data sent back by the printer in order to verify it. When
you want to start saving this data, select Output from the
Files menu. A window appears at the top of the screen and
prompts you for a file name. Once you enter a file name, all
data received from the printer is sent to the file as well as
being displayed on the screen. If an output file has already
been specified, you are asked to verify that you want to
open another file. If you answer yes, the file that is already
open will be closed before opening the specified file.

You also have the option of specifying the format of the data
in the file. The parsed option converts all unprintable char-
acters to a more readable format. The raw option sends the
data to the output file exactly as it is received from the
printer.

Record Files

It is sometimes helpful to have a record of the data that has
been sent to the printer. If you wish to capture data as it is
sent to the printer, choose Record in the Files option. Once
you enter the name of the file, all subsequent data that is
sent to the printer is recorded in this file until either an-
other record file is specified or the tool is exited.

Setting the
Carriage Return

Break Points

Note l'a

SRTool allows you to specify the characters that you wish to
be sent to the printer when you press the Enter key. The op-
tions are:

» Carriage return (default)
e Carriage return/line feed

e Line feed

If you want SRTool to stop sending data to the printer after
a particular set of data has been sent, but you don’t want it
to stop every time you use this input file, you can do this
without adding a question mark to the file. Instead, you
may specify a string of characters within your file to trigger
a break point by choosing Add break point in the Options
menu. A window appears at the top of the screen and
prompts you for the break point. Type in the character se-
quence after which you want the tool to stop sending data.
You can specify up to 5 break points at a time.

If you want the tool to pause after a PCL macro, you may
type either the macro name or the escape sequence.

Make sure you do this before you begin reading from the in-
put file. Every time this sequence is sent to the printer, the
tool stops sending data to the printer and a screen appears
at the top of the screen. You are given the same choices as
when a question mark is encountered in your input file:

* Browse the printer window
* Continue the input file
* Quit the input file

You can remove a break point at any time by choosing
Delete break point in the Options menu.

Using SRTool F-23

Checking the
Input Buffer

Note l'a

Data Pacing

Displaying Data
Received from the
Printer

Displaying Data
Sent to the Printer

Clearing the Windows

F-24 Using SRTool

In some situations it may be necessary to fill the buffer that
receives data from the printer. To do this you can choose
Check input buffer from the Options menu, then select No.
The tool then stops reading the data sent by the printer un-
til you exit the tool or command it to start reading again,
which is accomplished by selecting Yes in the Check input
buffer option.

The reading of data should only be turned off if absolutely
necessary; when the buffer is full, all of the data sent from
the printer is lost.

If you wish to indicate to the printer that you do not want it
to send data back to the host, you may lower the DTR line
by selecting Pace Off Data from the Options menu. To sub-
sequently raise the DTR line, select Pace On Data.

If you are not interested in the data the printer is sending
to the host, or if you are saving this data in a file and would
like to eliminate the time it takes to display this data on
the screen, you may choose to turn the printer window off.
To do this, select Display Printer Data from the Options
menu, then select No. To resume displaying this data, select
Display Printer Data, then select Yes.

Similarly, it is possible to turn off the displaying of data
sent to the printer from an input file. To do this, select Dis-
play Inputfile Data from the Options menu, then select No.
To again display this data, select Display Inputfile Data,
then select Yes.

If you wish to clear the input window or the printer window,
you may select Clear Windows from the Options menu. Se-
lect Input to clear the input window, Printer to clear the
printer window, or Both to clear both windows.

Byte Counters

Displaying
Line Status

If you would like to know how many bytes of data you have
sent or received, you may select Byte Counters from the Op-
tions menu, then select On. A small window is displayed
above both the input window and the printer window, dis-
playing the number of bytes sent to and received from the
printer. You may turn the counters off by selecting Byte
Counters and then selecting Off. You may reset the counters
by selecting Byte Counters and then selecting Reset.

When running tests it is sometimes helpful to be able to
monitor the lines to the printer. To do this, select Display
Line Status from the Options menu, then select On. For the
BiTronics interface, the SELECT, BUSY, PERROR, and
NFAULT lines are monitored. For serial I/0, the DTR line
is monitored. The status of the lines is displayed at the top
of the screen, directly below the pull-down menu bar. To
stop displaying this status, select Display Line Status, Off.

Using SRTool F-25

Kerning Information

Contents

Introduction., G-1
PairKerning G-2
SectorKerning G-3

Track Kerning..............., G-6

Introduction

This appendix describes the methods used for kerning char-
acters. The information described here provides more de-
tailed information related to the kerning tags documented
in Chapter 6.

There are basically three methods used for kerning text:

» Using data which kerns specific character pairs (pair
kerning)

* Reducing the white space between each character by an
amount indicated by sector kern data (sector kerning).

* Uniformly reducing the white space between all
characters (track kerning)

Each kerning method provides a different result. Pair kern-
ing only reduces space between predetermined character
pairs. Sector kerning analyzes all adjacent characters to cal-
culate and adjust the correct distance between each charac-
ter. Track kerning removes the same amount of space from
between all characters.

Kerning Information G- 1

Pair Kerning A kern pair table provides convenience and speed when
printing text using the default character escapements. Kern
pair tables are used to indicate which two character combi-
nations require special handling in order to maintain a con-
sistent appearance while setting type.

Predefined kern pairs do not normally use the maximum
kern values possible. Instead they use values which the
type designers have set to visually balance the use of the
character pairs with the characters that are not kerned.
Users are frequently familiar with the use of kern pairs.
Any two characters may form a kern pair; however, for a
given language, certain pairs of characters appear more fre-
quently than others. The following table shows some of the
most common kern pairs in the English language.
COMMON KERN PAIRS

AC AL AN AO AT AV AW AY LALILLLOLSLTLV LW sy st

Av Aw LY TATCTE TO TS TW TY

ac af ao at au av aw ax ay Ma T, T.

CACOCTCY mu Ta Te To Tr Tu Tw Ty

Co Ce NT VAVO VY

DY nu V, V. Va Ve Vo

du OAOT OV OW OY WA WO WV WY

ew ex ey PAPE PO PR W, W. Wa We Eh Wi Wo Wr

FAFGFO P, P. Pa Pe Po Pr wa we w, W.

F, F. Fa Fe Fo Fu Qu YAYOYS

GY RARORVRY Y, Y. Ya Ye Yo

KE KO ra rc re ro ya yeyoysy,y.

ke ko ku SA ST SY ZA

G- 2 Kerning Information

Sector Kerning

Sector kern information is assigned by the font designer to
aid in maintaining the aesthetic quality of the type design
while it is being set with the aid of computers. Sector kern
information allows the maximum kern distance to be deter-
mined for any two character combinations in the font.

To assign sector kern information, the designer first deter-
mines how close adjoining characters should be without
kerning. A vertical line is drawn to represent those bounds.
The vertical dimension of the font is then broken into sec-
tors. These sectors may be aligned next to each other, or
they can be overlapped or separated from each other.

The number of sectors and their break up of the character is
determined by the font designer. For the example shown in
Figure G-1, five sectors are defined. The font designer deter-
mines how close adjoining characters may come to the target
character for each of the sectors. The distance from the verti-
cal reference line to the maximum kern line is measured in
design units, and that value is assigned to the sector.

Maximum Kern Limits

SECTORS
5

—~ N W A

Left Sectorj Right Sectorj

Reference Reference

Figure G-1. Maximum Kern Limits

Kerning Information G- 3

To determine how close two characters may come, the val-
ues of adjoining sectors are added and the results are com-
pared. The smallest sum represents the maximum extent to
which the two characters may be kerned. Figure G-2 shows
the sectors defined for the two characters T and A.

46
46
| 27

58
46
3 |
25

0

Figure G-2. The Sectors Defined for Letters T and A

If A is set relative to T using only the horizontal escape-
ment value of the T (135), then the result would be that
shown in Figure G-3 with no kerning.

A

Horizontal Escapement for T

Figure G-3. The Letters T and A with No Kerning

G- 4 Kerning Information

To determine the maximum amount to which T and A can
be kerned, the values of the sectors are first summed.

Sector Values Summed: 1=27
2="71
3=179
4=46
5=>58

The smallest value is 27. To adjust for maximum kerning, 27

is subtracted from the horizontal escapement of T (135), with
the result being 108. Setting the A after the T with an escape-
ment of 108 results in a kerned pair with maximum kerning.

Figure G-4 shows TA with maximum kerning applied.

Figure G-4. The Kerned Letters T and A

As a general rule, kern pairs can be derived for any two
characters by using the sector kern information and apply-
ing a factor of 0.5 to the resulting maximum kern value.
The result is subtracted from the escapement value of the
first character.

Kerning Information G- 5

Track Kerning

G- 6 Kerning Information

Track adjusting (kerning) is based on an algorithm that

uses information provided by the typeface designer. Track
adjusting is used to reduce the white space between all char-
acters uniformly. The degree to which text is adjusted is de-
pendent upon the track being used and the point size of the
typeface. Each track covers a range of point sizes and con-
tains 4 values which define the point size and kern range.
The tighter the track kerning, the larger the minimum

point size is.

The first two values assigned would be the minimum and
maximum point size to which this track adjustment infor-
mation applies. Next are the minimum and maximum val-
ues. This can be determined from the sector kern
information. If the point size of the font is less than the
minimum point size specified then the minimum kern (usu-
ally zero) value is used. If the point size for the font is
greater than the maximum point size then the maximum
kern value is used. Inside this range the following formula
is applied:

X = ((Kmax - Kmin) / (Pmax - Pmin)) * Pcurr + (Kmin *
Pmax - Kmax * Pmin) / (Pmax - Pmin)

Pcurr = Current point size.

Pmax = Maximum point size to which track applies.
Pmin = Minimum point size to which track applies.
Kmax = Maximum kern value.

Kmin = Minimum kern value.

X = Amount by which to kern (This value is subtracted
from the horizontal escapement of the preceding charac-
ter. The larger the point size, the tighter the characters can
be placed together.)

Track kerning can also be used in conjunction with sector
kern information to achieve customized results as shown

Pmax = 20 pt.

below.

If:
Pmin =5 pt.
Kmax =5 pt.
Kmin =0 pt.

Using the formula above, and given the current point size
(Pcurr), the kerning distance for each point size shown (X) is:

Pcurr

4

5

10

18 20 21

X

0

1.667

4333 | 5 5

Kerning Information G- 7

HP MSL Character Number Table H

The Character Table (Table H-1) lists all of the symbols in
the HP Master Symbol List. For each character in the table,
the Agfa (CG) character code number is cross-referenced to
the HP Master Symbol List number and the Character
Name description.

Table H-1. Character Table (HP Master Symbol List)

CG HP CG HP
Char. MSL Character Name Char. MSL Character Name
Code No. Code No.

1 86 t 35 42 |

2 81 o] 36 49 P

3 74 h 37 36 C

4 80 n 38 55 \%

5 79 m 39 38 E

6 78 | 40 59 z

7 84 r 41 37 D

8 73 g 42 35 B

9 75 i 43 52 S

10 82 p 44 58 Y

11 69 c 45 39 F

12 88 \Y 46 57 X

13 71 e 47 34 A

14 92 z 48 56 w

15 70 d 49 43 J

16 68 b 50 54 U

17 85 S 51 50 Q

18 91 y 52 44 K

19 72 f 53 6 ampersand

20 90 X 85 1 exclam

21 67 a 86 32 question

22 89 w 87 66 quoteleft

23 76 j 88 8 quoteright

24 87 u 96 188 guillemotleft

25 83 q 97 190 guillemotright

26 77 k 98 121 exclamdown

27 53 T 99 122 questiondown

28 48 O 106 221 doubleexclam

29 41 H 172 148 AE

30 47 N 173 1091 OE

31 46 M 174 152 ae

32 45 L 175 1090 oe

33 51 R 176 1047 ij

34 40 G 177 159 germandbls

HP MSL Table H-1

Table H-1. Character Table (HP MSL) (Cont’d.)

CG HP CG HP
Char. MSL Character Name Char. MSL Character Name
Code No. Code No.

231 137 agrave 367 114 Yacute

232 133 aacute 368 115 yacute

233 141 adieresis 386 1096 Islash

234 129 acircumflex 392 1095 Lslash

235 163 atilde 423 1093 guilsinglright
236 149 aring 424 1092 guilsinglleft
238 118 ccedilla 444 1017 quotedblleftl
239 138 egrave 445 1018 quotedblright
240 134 eacute 480 1036 prescription
241 142 edieresis 493 1104 copyrightlarge
242 130 ecircumflex 497 1105 trademarksans
243 328 dotlessi 541 1106 Zcaron

244 150 iacute 542 172 Scaron

245 154 igrave 551 101 Egrave

246 158 idieresis 558 155 Odieresis
247 146 icircumflex 563 153 Adieresis
248 120 ntilde 564 145 Aring

249 135 oacute 565 161 Aacute

250 139 ograve 566 99 Agrave

251 143 odieresis 567 100 Acircumflex
252 131 ocircumflex 568 162 Atilde

253 151 oslash 569 160 Ocircumflex
254 136 uacute 570 157 Eacute

255 140 ugrave 571 102 Ecircumflex
256 144 udieresis 572 103 Edieresis
257 132 ucircumflex 573 167 Igrave

258 171 otilde 574 166 lacute

276 117 Cecedilla 575 104 Icircumflex
291 147 Oslash 576 105 Idieresis
349 1107 13 577 119 Ntilde
363 164 Eth 578 169 Ograve
364 177 Thorn 579 168 Oacute
365 165 eth 581 170 Otilde
366 178 thorn 582 174 Uacute

H-2 HP MSL Table

Table H-1. Character Table (HP MSL) (Cont'd.)

CG HP CG HP
Char. MSL Character Name Char. MSL Character Name
Code No. Code No.

583 111 Ugrave 1303 1094 opensquare

584 112 Ucircumflex 1307 1110 encirclemedium

585 156 Udieresis 1323 297 greaterthanorequalto

597 173 scaron 1324 298 lessthanorequalto

599 1031 zcaron 1335 295 intersection

720 176 ydieresis 1374 293 phil

721 175 Ydieresis 1404 189 closedbox

790 1067 quotesinglbase 1406 11n embulletsolid

791 1103 registersans 1407 1109 encircleopen

812 0 thinspacereverse 1408 331 bullet

813 1117 enspacereverse 1451 653 emboxopenl

814 1118 emspacereverse 1565 15 period

839 1068 perthousand 1566 13 comma

1094 1019 quotedblbase 1567 27 colon

1215 283 Gamma 1568 28 semicolon

1219 98 Delta 1569 9 parenleft

1228 285 Sigma 1570 10 parenright

1231 289 Theta 1571 60 bracketleft

1234 288 Phi 1572 62 bracketright

1237 290 Omega 1573 14 hyphen

1240 281 alpha 1574 326 endash

1241 282 beta 1575 325 emdash

1242 291 delta 1576 16 slash

1243 304 eta 1591 332 nsuperior

1246 180 mu 1592 18 one

1248 284 pi 1593 19 two

1250 286 sigma 1594 20 three

1254 294 epsilon 1595 21 four

1261 287 tau 1596 22 five

1267 301 approxequal 1597 23 Six

1273 296 equivalence 1598 24 seven

1282 1100 register2 1599 25 eight

1283 1101 copyright2 1600 26 nine

1286 303 radicall 1601 17 zero

HP MSL Table H-3

Table H-1. Character Table (HP MSL) (Cont’d.)

CG HP CG HP
Char. MSL Character Name Char. MSL Character Name
Code No. Code No.

1602 4 dollar 1719 3 numbersign
1603 128 cent 1722 1028 ellipsis
1619 200 onesuperior 1725 125 yen

1620 197 twosuperior 1727 310 minute
1621 198 threesuperior 1728 311 second
1622 1001 foursuperior 1751 1023 thinspace
1623 1002 fivesuperior 1752 1021 enspace
1624 1003 sixsuperior 1753 1020 emspace
1625 1004 sevensuperior 1807 232 Pt

1626 1005 eightsuperior 1825 123 currency
1627 1006 ninesuperior 1827 61 backslash
1628 1000 zerosuperior 1846 1412 ogonek
1656 324 fraction 1847 1407 hungarumlaut
1673 185 onehalf 1851 1411 cedilla
1674 184 onequarter 1852 1400 acute

1675 182 threequarters 1853 1401 grave

1684 302 centerperiod 1854 1403 dieresis
1700 124 sterling 1855 1402 circumflex
1702 5 percent 1856 1404 tilde

1703 127 florin 1857 1408 ring

1704 12 plus 1858 1405 caron

1705 183 minus 1859 1410 macron
1706 191 plusminus 1860 1406 breve

1707 30 equal 1861 1409 dotaccent
1708 201 multiply 1873 1425 Ogonek
1709 202 divide 1874 1420 Hungarumlaut
1711 186 ordfeminine 1878 1424 Cedilla
1712 187 ordmasculine 1879 1413 Acute
1713 116 degree 1880 1414 Grave
1714 312 dagger 1881 1416 Dieresis
1715 327 daggerdbl 1882 1415 Circumflex
1716 126 section 1883 1417 Tilde
1717 181 paragraph 1884 1421 Ring
1718 11 asterisk 1885 1418 Caron

H-4 HP MSL Table

Table H-1. Character Table (HP MSL) (Cont’d.)

CG HP CG HP

Char. MSL Character Name Char. MSL Character Name
Code No. Code No.

1886 1423 Macron 7259 1113 arrowtab

1887 1419 Breve 7260 1114 hardspace

1888 1422 Dotaccent 7274 113 connector

1904 179 catalan 7275 314 connectordouble
1905 1427 Catalan 7276 233 logicalnotreverse
3171 1060 careofscript 7277 228 logicalnotflopped
4662 1112 carriagereturn 7278 31 greater

4757 1040 fi 7279 29 less

4758 1041 fl 7280 63 circumflex1

4759 1042 ff 7281 94 arrowvertexl
4760 1043 ffi 7282 64 ruleunderline
4761 1044 ffl 7283 96 asciitilde

4767 196 registered 7284 375 asciigrave

4768 193 copyright 7286 192 brokenbar

4770 313 trademark 7287 309 apostrophen
4771 1034 slogan 7291 306 Lcatalan

4793 1099 carriagereturnl 7295 307 Icatalan

7002 231 trianglesoliddown 7297 370 lira

7004 230 trianglesolidup 7304 322 Caronspacing
7005 219 trianglesolidleft 7305 330 Cedillaspacing
7006 218 trianglesolidright 7306 318 Gravespacing
7009 661 emboxsolid 7307 317 Acutespacing
7018 194 logicalnot 7308 320 Dieresisspacing
7248 308 liter 7309 319 Circumflexspacing
7249 33 at 7310 321 Tildespacing
7250 93 braceleft 7311 1085 Macronspacing
7251 95 braceright 7312 323 Ringspacing
7252 305 enboxsolid 7313 107 gravespacing
7253 1108 enboxopen 7314 106 acutespacing
7254 1102 trademark 7315 109 dieresisspacing
7255 329 quotesingle 7316 108 circumflexspacing
7256 2 quotedbl 7317 110 tildespacing
7257 1115 hyphensoft 7318 1084 macronspacing
7258 1116 embox 7319 316 ringspacing

HP MSL Table H-5

Table H-1. Character Table (HP MSL) (Cont’d.)

CG HP CG HP
Char. MSL Character Name Char. MSL Character Name
Code No. Code No.

7320 199 cedillaspacing 7402 245 lowerrghtbxcrnrdbl
7321 315 caronspacing 7403 242 rightboxsidedouble
7322 1097 hungarumlautspacing 7404 259 middleboxbottomdble
7323 1045 Hungarumlautspacing 7405 260 middleboxtopdouble
7345 1086 brevespacing 7406 261 leftboxsidedouble
7346 1087 Brevespacing 7407 262 cntrboxbarhorizdble
7347 1089 Dotaccentspacing 7408 272 boxintersngltodble
7348 1088 dotaccentspacing 7409 256 Iftboxsiddbltosng|
7349 1098 ogonekspacing 7410 243 centerboxbarvertdbl
7350 1030 Ogonekspacing 7411 239 rightboxsidesngdbl
7378 254 thinintersctinglines 7412 267 midtopsingletodble
7379 236 thinverticalline 7413 265 midbotdbletosingle
7380 237 rightmiddleboxside 7414 268 Iwrleftcrnrdbltosngl
7381 250 middleboxbottom 7415 271 upprlftdbletosngl
7382 251 middleboxtop 7416 240 upprrghtboxcrner
7383 252 leftmiddleboxside 7417 246 Iwrrghtbxsngltodble
7384 253 centerboxbarhoriz 7418 276 solidfillcharacter
7385 248 upperrightboxcorner 7419 277 solidfillbottomhalf
7386 274 lowerrightboxcorner 7420 280 solidfilltophalf

7387 249 lowerleftboxcorner 7421 278 solidfilllefthalf

7388 275 upperleftboxcorner 7422 279 solidfillrighthalf
7389 273 boxinterdbletosngle 7423 222 thickunderliningrule
7390 264 midbotsngletodble 7424 235 seventyfivegraytint
7391 266 midtopdbletosngle 7425 234 twentyfivegraytint
7392 238 rightboxsiddblesingl 7426 97 error

7393 255 leftboxsidesngltodbl 7427 205 heart

7394 247 lwrrghtboxdbltosngl 7428 206 diamond1

7395 269 Iwrleftsngletodble 7429 207 club

7396 270 uprlftsingletodble 7430 208 spade

7397 241 uprrightboxdbltosngl 7431 203 smileface

7398 263 boxintersectiondble 7432 204 darksmile

7399 257 lowerleftbxcrnrdble 7433 215 eighthnote

7400 258 uprleftboxcrnrdble 7434 216 doublesixteenthnote
7401 244 uprrghtboxcrndble 7435 214 female

H-6 HP MSL Table

Table H-1. Character Table (HP MSL) (Cont’d.)

CG HP CG HP
Char. MSL Character Name Char. MSL Character Name
Code No. Code No.

7436 213 male 7472 508 Lambda
7437 217 compass 7473 509 Xi

7438 209 embulletsolidl 7474 510 Pi

7439 211 emcircleopen 7475 511 Sigma
7440 210 inversecenterbullet 7476 512 Upsilon
7441 212 inverselargecircle 7477 513 Phi

7442 292 infinityserif 7478 514 Psi

7444 299 integraltp 7479 515 Omega
7445 300 integralbt 7480 516 gradient
7446 225 arrowdown 7481 517 partialdiff
7447 224 arrowup 7482 518 sigmal
7448 227 arrowleft 7483 519 notequal
7449 226 arrowright 7484 520 summationbottomrule
7450 220 northsoutharrow 7485 522 alpha
7451 223 nrthstharrowperp 7486 523 beta
7452 229 arrowboth 7487 524 gamma
7453 628 northwestarrow 7488 525 delta
7454 625 northeastarrow 7489 526 epsilon
7455 626 southeastarrow 7490 527 zeta
7456 627 southwestarrow 7491 528 eta

7457 554 arrowdblleft 7492 529 theta
7458 552 arrowdblright 7493 530 iota
7459 551 arrowdbldown 7494 531 kappa
7460 553 arrowdblup 7495 532 lambda
7461 556 arrowdblboth 7496 533 mu

7462 555 doublearrowupdown 7497 534 nu

7463 500 radical 7498 535 Xi

7464 501 isproportionalserif 7499 536 omicron
7466 502 baseofnaturallog 7500 537 pi

7467 503 Epsilon 7501 538 rho

7468 504 therefore 7502 539 sigma
7469 505 Gamma 7503 540 tau

7470 506 Delta 7504 541 upsilon
7471 507 Theta 7505 542 phi

HP MSL Table H-7

Table H-1. Character Table (HP MSL) (Cont’d.)

CG HP CG HP
Char. MSL Character Name Char. MSL Character Name
Code No. Code No.

7506 543 chi 7540 583 functionalcomposite
7507 544 psi 7541 584 circlelarge
7508 545 omega 7542 586 perpendicularleft
7509 546 thetal 7543 585 perpendicularright
7510 547 phiopenalternate 7544 587 integral
7511 548 pialternate 7545 588 contourintegral
7512 549 approximatelyequal 7546 589 angle
7513 550 notidenticalwith 7547 590 emptyset
7514 557 rghtarrwoverleftarrw 7548 591 infinity
7515 558 reversiblereaction 7549 592 Beth
7516 559 vectorsymbol 7550 593 Gimel
7517 560 summationtoprule 7551 594 cblackletter
7518 561 universal 7552 595 iblackletter
7519 562 existential 7553 596 Rfraktur
7520 563 perpndiclarupsidedwn 7554 597 zblackletter
7521 564 perpendicular 7555 598 bracketlefttp
7522 565 union 7556 599 bracketleftbt
7523 566 element 7557 600 bracelefttp
7524 567 suchthat 7558 601 braceleftmid
7525 568 notelement 7559 602 braceleftbt
7526 569 propersubset 7560 603 contourintegcenter
7527 570 propersuperset 7561 604 summationtoplftcrner
7528 571 notsubset 7562 605 centerlinedbl
7529 572 doesnotcontain 7563 606 summatnbottmiftcrner
7530 573 reflexsubset 7564 607 summationlowerdiag
7531 574 reflexsuperset 7565 608 bracketrighttp
7532 575 circleplus 7566 609 bracketrightbt
7533 576 sun 7567 610 bracerighttp
7534 577 circlemultiply 7568 611 bracerightmid
7535 578 abstractminus 7569 612 bracerightbt
7536 579 abstractdivide 7570 613 braceverticalpiece
7537 580 logicaland 7571 614 histogram
7538 581 logicalor 7572 615 radicalcomposite
7539 582 exclusiveor 7573 616 summationtopright

H-8 HP MSL Table

Table H-1. Character Table (HP MSL) (Cont'd.)

CG HP CG HP
Char. MSL Character Name Char. MSL Character Name
Code No. Code No.
7574 617 summationcenterpiece 7609 656 grtrcirclbottomright
7575 618 summationbottomright 7610 657 productbottom
7576 619 summationupperdiag 7611 658 producttop
7577 620 minusplus 7612 659 brackrghtdbltop
7578 621 obtuselessthan 7613 660 brackleftdblbottom
7579 622 obtusegreaterthan 7615 662 diamond
7580 623 masksymbol 7616 663 suchthatrotated
7581 624 congruent 7617 664 asterisk
7582 629 triangleup 7618 665 arrowextndrsnglhoriz
7583 630 triangleright 7619 666 arrowextndrdblehoriz
7584 631 triangledown 7620 667 revsummationcenter
7585 632 triangleleft 7621 521 because
7586 633 muchlessthan 7622 333 homeplate
7587 634 muchgreaterthan 7623 668 rightanglesymbol
7588 635 identical
7589 636 definedas
7590 637 Digamma
7591 638 plancksconstant
7592 639 lagrangian
7593 640 powerset
7594 641 weierstrass
7595 642 summation
7596 643 bracketleftdouble
7597 644 bracketdoublemiddle
7598 645 bracketrightdouble
7599 646 quartercircletopleft
7600 647 grtrcrclbottomleft
7601 648 unioncompositemiddle
7602 649 intersection
7603 650 union
7604 651 brackleftdbltp
7605 652 brackleftdblebottom
7607 654 lozenge
7608 655 quartrcircletopright

HP MSL Table H-9

Index

|
600 dpi 1-10, 13-3

Ec?DC1 Command A-16
ECE Reset 2-11
A
Abbreviated Font Selection Commands

Problems With 5-3
Absolute Character Size (Sl) 10-10, 10-18
Absolute Cursor Positioning 4-6 - 4-7
Absolute Direction (DI) Command 10-15
Absolute Units

HP-GL/2 10-11
Accessing Special Characters

Example 5-19
ACG Character Numbers D-3, H-1
Actual Printable Area 3-4
Adaptive compression 9-5,9-12, 13-10, 14-2, E-6

Example 9-14

Addressable Area
See Logical Page
Adjusting Line Spacing

Example 5-17
Adjusting Line Spacing For Point Size 5-17
AG.C

printCharacterMetrics 6-71

printGeneralinfo 6-69

printKerninginfo 6-72

printSymbolMSLInfo 6-71

printSymSetinfo 6-71

printTypefaceMetrics 6-70
AG.C (Sample TFM Implementation) 6-68
Agfa Compugraphic 7-14

Typeface Number C-14
Anchor Point

Picture Frame 10-4

See also Picture Frame Anchor Point
Angle

Printing Fonts at Any 10-15
Anisotropic Scaling

Relative vs. Absolute 10-20
Anisotropic Scaling of Fonts 10-18

Appearance width (Tag 414) 6-19, 6-70,
6-75 - 6-76, 8-3
Application Downloader 7-11
Arabic characters D-9
Array length 6-12
Array Length (refer Tag 404) 6-71
Ascent (Tag 425) 6-25, 6-70, 8-5
ASCII Generator 6-68
Aspect Ratio 10-11
Auto Macro Overlay, Disabled 3-9
Auto-Rotation
Effect on Memory A-11
Fonts 5-13
Raster Images 9-20
AutoFont Support 1-7, 6-1, 6-52, 13-9
End-User Considerations 6-57
Font Cartridges 6-48
AutoFont Support for TrueType 8-1

6-1, 6-47, 6-54, 6-57,
6-79 - 6-80, 7-2, 7-6 - 7-7,
7-10,C-1,C-6-C-7

AutoFont Support Installer

Automatic Font Support 6-1
Automatic Forms Overlay, Example 12-4
Average width (Tag 419) 6-22, 6-70, 8-4
B
Base Driver 6-66
Bezier curves 1-8, 1-10, 10-1, 10-6
Bi-directional communications 2-23
BIN format, converting to E-3
Bin Selection 2-32
Binary Transfer 9-5
Binary Transfer Character

Upper-Case Only A-15
BINS.ZIP E-1
Bitmap files 8-1
Bitmapped Fonts 5-2, 6-47 - 6-48

Compressed 19
Bitmaps 6-81
Blackwidth 6-23
Block size, raster graphics E-8
Bottom Margin 3-13

Establishing 3-16

Index-1

Bottom of Page
Placing Text at
Bottom-Most Position
Moving Cursor To
BR Command
BUILDSYM
Example
using
BUILDSYM kit
BUILDSYM operation
BUILDSYM utility
Bullet
BZ Command

C

C Programming Language, Examples
Calculating VMI
call_program
Calling a Macro
CAP

See Current Active Position

Floating

Starting Cursor Position
CAP (Current Active Position)
Capheight (Tag 423)
Carriage return
Cartridge fonts (glue file)
Cartridge-based fonts
Cartridges

Macro

Scalable Typeface
Cell-Level Clipping
CG character numbers
CG-to-MSL conversion
CG2HP.EXE
Changing Character Spacing
Changing Orientation

Example
Changing the print environment
Chapter summary
Character ascent (Tag 437)
Character descent (Tag 438)
Character descriptor
Character Index
Character numbers
Character parameters
Character Reference Point (CRP)
Character Spacing

2-Index

4-15

4-14
10-1

D-5
D-5
D-1
D-2
D-1
7-10
10-1

5-18
C-12,C-16
12-2

A-13

A-17

9-17

6-24, 6-70, 8-4
2-4

6-37

6-54

12-2

6-48

4-11

H-1

6-97

D-4

3-21

3-9

3-10

2-9

1-1

6-29, 6-72, 8-6
6-29, 6-72, 8-6
7-3

6-72

D-3

6-27

6-28

Example
Character table
Characters

Accessing Special
choose_mode()
Clearing fonts from memory
Clearing printer memory
Clipping

and Cursor Positioning

at HP-GL/2 Picture Frame Boundaries

Cell-Level

Dot-Level

Example Demonstrating
Graphics

Outside Printable Area Boundary

Outside Raster Image Area

Solution for

See Unprintable Region
Combining escape sequences

Font Selection
Command Byte

Delta Row Compression
Commands

Consolidating with Macros

PCL Job setup
Comment (Tag 402)
COMMENT Command, PJL
Comment information (Tag 402)
Common problems
Compatibility Issues
Compressed fonts
CompressErgs()
Compression

mode 0

mode 1

mode 2

mode 3

mode 5

Raster Graphics
Compression Mode Command
Compression Mode Performance
Compression Modes

Comparison

Raster Graphics
Compression, Lossless/Lossee
CompressLJ3()
Consolidating Commands

Using Macros
Control panel

Overriding settings

322
H-1

5-18
E-8
2-35
2-35
4-11
4-11
10-20
4-11
4-11
3-7
14-4
3-5
9-4
14-1

1-7,13-1
5-5

9-8

12-1

2-5

6-69

2-4

6-11, 8-2
14-1
A-10

1-9

E-8

E-5
E-5

E-6
E-6
9-5
9-5
9-15

E-5
9-2
A-11
E-7

12-1
2-7,2-9
2-37

Control Panel job offset setting
Control panel reset
Control Panel Settings
Overriding
Control panel, Reset Menu
Controlling Right Margin
Example
Controlling the Left Margin
Controlling Top Margin
Conventions used in manual
Converting .TIF to .BIN format
Converting to HP MSL numbers
Coordinate System
HP-GL/2 & PCL
Copyright (Tag 401)
Copyright Information (Tag 401)
CR
Creating TFM files
Current Active Position
See also Cursor Positioning
Floating CAP
Raster Graphics
Rectangular Area Fill (Rules)
Saving/Restoring
Starting Position
Text
Vector Graphics (HP-GL/2)
Current Active Position (CAP)
Cursor
Storing (Example)
Cursor Position
Saving
Starting
Cursor Positioning
Absolute
Absolute vs. Relative
At Page Limits
See Current Active Position
Dots vs. Decipoints vs. Columns/Rows
Raster Graphics
To Lowest Position
Units
Using Rows and Columns
Cyrillic characters

2-31
2-11

13-2
2-11
3-20
3-20
3-19
3-15

1-6

D-4

10-7
6-69
6-11, 8-1
2-4

6-81

A-12
4-2
4-4

4-10

A-17
4-1
4-3
4-1

12-3
9-17
4-10
A-17

4-7
4-6
4-11

4-7
9-17
4-14
4-7
4-9
D-9

D
Data Compression

Raster 9-2,9-5
Data flow, TFM 6-85
Data Loss 4-11, A-11

See Unprintable Region
Data loss and PJL 2-34
Decipoints

Using for Cursor Movement 4-9
Default

HP-GL/2 Orientation 10-8
Default Symbol Set A-14
Defaulting environment features 2-11
Delta Row Compression 9-5, 9-8, E-6

Command Byte 9-8

Example 9-11

Replacement Byte 9-8

Seed Row 9-8
Delta X 4-1
Descent

Lower Case (Tag 428) 6-71
Descent (Tag 426) 6-25, 6-70, 8-5
Descent Distance 4-15
Design Unit Value 5-6
Design Units 6-11, G-3

Converting 6-64
Design Units (Tag 408) 6-15, 6-70, 8-3

Desired state

Example (job setup) 2-15, 2-18, 2-26, 2-28

Desired state, setting features to 2-13
Desktop Publishing 4-9
Destination Image 11-1-11-2
Device data 6-35
Device dots 6-65, 8-8
Device-Independence 4-9
DI (Absolute Direction) Command 10-15, 10-17
Dingbats C-18
Disk-based fonts 6-54
Display Functions Mode A-16

Disproportionate Font Scaling
See Anisotropic Scaling
Distorted Scaling
See Anisotropic Scaling

Dot Placement Accuracy 4-16
Dot size 4-8
Dot-Level Clipping 4-11
Dots (see PCL Units) 4-7
Downloadable symbol sets D-1

Downloading Fonts 5-9, 5-11

Index-3

Example
Permanent vs. Temporary
Drivers

Reading Font Metric (TFM) Data

Drop-Shadowed Type (Example)

5-11
5-12

6-53
11-12

DT (Define Label Terminator) Command 10-17, 14-5

Dual Context Extensions

Duplicate row command byte value

E

Eastern European Latin characters
Eighth Bit Shift Not Supported
Ejecting Pages

Solution for Unexpected
Empty row command byte value
End Graphics
end parameter
End raster graphics

10-13
9-14

D-9
A-14

14-4
9-14

9-4
D-10
9-16

ENTER command, PJL 2-4, 2-18, 2-24, 2-34, 14-4

Enter PCL Mode Command
Effect on CAP

Envelope feeder

Envelopes, B5

Environment
Factory Default Environment
Modified Print Environment
Overlay environment
PJL Current Environment
User Default Environment

Environment defaults

Environment variables

Environment, PJL Current

EOJ command, PJL

Erasing fonts and macros

Ergs_PCL

Error 20, Solution for

Error 21 (see page protection)
Solution for
and HP-GL/2

Error Codes, Rambo

Escape Sequences, Combining

Escapement data, accessing

Escapement value

Example
Accessing Special Characters
Accessing the TFM Data
Adaptive compression
Adjusting Line Spacing

4-Index

10-17
4-4
3-1

1-10

2-7

2-8

2-8

2-8

2-8

2-11

2-14, 2-17, 2-24
2-11

2-8,2-11 - 2-12
2-36

E-7

14-1

14-3
13-12
C-9
13-1
6-98
6-28

5-19
6-63
9-14
5-17

Automatic Forms Overlay 12-4
Avoiding the Unprintable Region 3-17
Changing Orientation 3-10
Character Spacing 3-22
Compatibility and Floating CAP A-13
Controlling Right Margin 3-20
Delta Row Compression 9-11
Downloading Fonts 5-11
Drop-Shadow Effects Using Print Model — 11-12
Erasing fonts and macros 2-36
Font Management 5-10
Job Control and Page Setup 3-23
Job Offset 2-32
Job setup 2-26, 2-28
Job setup without PJL 2-15
Justifying Text 5-15
Language switching 2-20
LaserJet llISi job setup 2-18
Merging Fixed-Pitch Text With Graphics 9-18

Merging Proportional Text With Graphics ~ 9-19

Moving Cursor to Lowest Position
PackBits (TIFF) Encoding
Pattern-Filled Raster Graphics

Pattern-Filled Raster Graphics on Black

Pattern-Filled Type

4-14
B-10
11-8
11-9
11-11

Placing Graphics at the Top-Most Position 4-11

Placing Text at Page Bottom
Placing Text at Top-Most Position
Print Direction
Print-and-Space Cursor Positioning
Print-and-Space Formatting
Printing Internal Scalable Typefaces
Printing Rules
Printing Two Orientations on a Page
Rectangular Area Fill and

Pattern Transparency Mode
Reverse and Pattern-Filled Type
Right-Most Page Position
Rotating Fonts at Any Angle
Run-Length Encoding
Sample .SYM file
Saving/Restoring the Cursor Position
Seeing the Printable Limits
Selecting a Paper Source
Selecting Fonts by Characteristic
Selecting Legal-Size Landscape Page
Setting the Left Margin
Setting Up a Print Job
Storing the Cursor When Using Macros
TIFF (PackBits) Encoding

4-15
4-12
B-1
4-5
3-18
5-3
B-3
3-11

11-5
11-10
4-13
10-16
9-7,B-10
D-7
4-10
3-7
3-1
5-5
3-4
3-19
3-23
12-3
9-8

TIFF Encoding B-10

User-defined patterns 11-14
Using BUILDSYM D-5
Using Primary and Secondary Fonts 5-8
Using Rambo (#1) C-8
Using Rambo (#2) C-8-C-9
Using TFM Values in Calculations 6-64
Using the Page Length Command 3-4
Using the Page Size Command 3-3
Executing a Macro 12-2
Expanded 1/O A-14
F
Factory Default Environment 2-7,2-11
FAIS files 6-81, 7-1, 7-10, 8-1
FASST E-1
Data size E-10
Integration E-5
Kit E-1
Modifying code E-9
Program structure E-5
Shell E-1, E-3
Shell (major functions) E-6
Testing data E-11
Testing results E-12
Feature comparison A-1
Feature Support Matrix A-1
Features
Locking out 2-13, 2-16, 2-24
File structure
Job setup commands 2-5
Print data 2-5
See Print file structure
Filenames
TFM 6-67
Filling images with user-defined patterns 11-13

Filling Images/Fonts With Patterns
See Print Model

Filling polygons 1-8
Filling Rectangles With Patterns 11-5
First Character Index 6-72
First code parameter D-9
Fixed pitch 6-18
Floating CAP A-12

Avoiding Problems (Example) A-13
Floating Underline 5-19
Font Auto-Rotation 5-13

and Memory Use 5-13

Font Cartridges
Scalable
Screen Fonts for
Font class (glue file)
Font Descriptor
Font entry (glue file)
Font file (glue file)
Font file formats
Font header
Font Height (Point Size)
and Scalable Typefaces
Font ID Number
Font Management
and Macros
Example
General
Font metrics
Benefits of TFM Support
Contained in TFM Data Structure
Font metrics, reading
Font parameters
Font Selection
Eighth Bit Shift Not Supported
Example
Exceptions
Using Shift In/Shift Out
Font Selection by ID Number
Font Selection Characteristics
Priority
Font Spacing
Font Products Using the Same
Font Support
Intellifont Integration
Tips for Efficient
Font support history
Fonts
AutoFont Support
Clearing from memory
Compatibility
Deleting with Reset
Downloading
Drop Shadow (Example)
Dynamic Font Metric Support
Effect of ?E on
Erasing downloaded
Filling with Patterns/Gray Shades
Justifying Text
Mirror Image (Example)
Mirrored
Pattern-Filled (Example)

6-48
7-13
6-44

C-1
6-38
6-42

7-1
6-50

5-11

A-16
5-10

5-9

1-7
6-50
6-56
6-94
6-23

A-14
5-5
5-5

5-3
5-4
5-18

7-5
13-9
6-49

6-1

2-35
13-9
14-3

5-9, 5-11
11-12
6-53
2-35
2-38
11-1
5-14

B-6

10-1
11-10, B-3

Index-5

Permanent 2-35, 5-11

Primary and Secondary 5-8
Print Model (Example) B-3
Printing at Any Angle 10-15
Printing on 45-Degree Angle (Example) B-6
Resident 6-48
Reverse Type (Example) 11-10
Reverse Type (Print Model) 11-1
Rotated at 30-Degree Increments (Example) B-7
Rotating at any Angle 10-1
Scaling 5-13
Scaling Anisotropically 10-18
Selecting 5-4
Selecting by Characteristic 5-3
SIMM-based 5-2
Special Effects with HP-GL/2 (Example) B-6
Special HP-GL/2 Effects 10-15
Tips for Efficient Use 13-8
Unbound scalable C-1
Using Shift In/Shift Out 13-8
Working With 5-14
FORMLINES (text length) 2-29
Forms
Automatic Overlay (Example) 12-4
Using Macros for 12-1
Forms Applications
Skew 4-16
Frame
PCL Picture Frame 10-3
FT Command 10-1
FT22 10-2
G
General Font Management 5-9
getstring C-12
Glue file 6-37, 6-80
format 6-37
Glue file, sample 6-45
Graphics
Clipping 14-4
When to Use Vector vs. Raster 10-6
Graphics compression
Optimizing E-1
Graphics Limits
Vector 10-9
Greek characters D-9

6-Index

H
Half Line Feed 3-17,4-1
Hard-Clip Limits 10-9
Hard-Coding TFM Data 6-52
Header bytes, user-defined pattern 11-15
Headlines

Line Spacing For 5-17
Hebrew characters D-9

Hewlett-Packard Graphics Language (HP-GL/2) 10-1
HMI

Default After Font Changes A-15
Defaulted 3-9
See Horizontal Motion Index

HMI (Horizontal Motion Index) 3-19

Horizontal Escapement 4-1, 4-13, 5-14, 6-28, 6-64,
6-72, 6-98,8-6, G-4

Horizontal Motion Index 3-21, 4-1,4-9
Default 3-19
Defaulting After Font Changes A-15
Example 3-22

Horizontal Motion Index (HMI) 3-19

How to Use This Manual 1-1

HP MSL Character Table H-1

HP MSL numbers D-3

HP-defined patterns 11-1

HP-GL/2 1-8, 10-1
and Error 21 13-12
and Macros 12-7
Aspect Ratio 10-11
Basic Steps for Creating Plots 10-5
Basic Steps for Importing Plots 10-4
C Examples B-9
CAP 4-3
Clipping Graphics Unexpectedly 14-4
Coordinate System 10-7
Default Orientation 10-8
Font Effects (Example) B-6
1/0 Data Transfer 10-6
Images Not Printing Properly 14-5
Labels (Text) 10-11
Line Joins/Ends 13-11
Memory Usage 10-12
Merging Graphics with Text 10-14
Page-Size Independent Plots 10-10
PCL Picture Frame 10-3
Picture Frame Anchor Point 10-4
Picture Frame Scaling Factor 10-3
Picture Presentation Directives 10-2
Plot Size 10-3,10-11

Plotter Units

Printing Pie Chart (Example)

Scaled Mode

Scaling Factor & Picture Frame

Special Font Effects

Stick Font

Syntax

Tips for More Efficient Plots

Units

User Units

Vector Graphics Limits

When to Use vs. Raster
HP-GL/2 & PCL Orientation Interactions
HP-GL/2 and page protection
HP-GL/2 Commands

(SS) Select Standard Font

DI (Absolute Direction)

DT (Define Label Terminator)

Enter PCL Mode

IN (Initialize)

LO (Label Origin)

LT (Line Types)

PE (Polyline Encoded)

PU (Pen Up)

RO (Rotate)

SC (Scale)

SC (Scaled Mode)

SD (Standard Font Definition)

S| (Absolute Character Size)

S| (Absolute Size)

SP (Select Pen)

SR (Relative Character Size)

WU (Pen Width Selection Mode)
HP-GL/2 Coordinate System
HP-GL/2 in macros
HP-GL/2 Mode
HP-GL/2 Plot Size

I/O, Expanded
I/O Data Transfer
and HP-GL/2
1/O Improvement
1/0, modular
Image fill
See Print Model
Imagesetter

4-10
B-9
10-10
10-10
10-15
B-7
14-5
13-11
10-11
4-10
10-9
10-6
10-7
2-33
10-13
10-17

10-15, 10-17
10-17, 14-5

10-17
10-16
10-17
10-11
13-11
10-17

10-7
10-16
10-10
10-17

10-10, 10-18

B-6
10-16

10-10, 10-18

10-11
4-4
12-1
4-4
10-3

A-14
10-6

5-1
A-14

4-9

Importing HP-GL/2 Plots

Basic Steps 10-4
IN (Initialize) Command 10-16
Incorporating Intellifont 7-5
Index parameter D-8
INFO command, PJL A-16
Initialization 2-38, 13-2, 13-5
LaserJet 4 13-8
LaserJet IlISi 13-7
non-PJL 13-7
INITIALIZE command, PJL 2-7,2-11
INQUIRE command, PJL 2-26
Integrating FASST E-5
Integrating Intellifont without AutoFont installer 7-7
Intellifont 5-6, 6-48, 7-10, 8-1
Adding 7-5
Availability 7-10
Bullet 7-10
Code 7-7
Explanation 7-10
FAIS files 7-1
Integration 7-1
Requirements for adding 7-5
Inter-word Spacing (Tag 421) 6-70, 8-4
Interface
Video A-14
Internal Fonts 6-48
Internal fonts (glue file) 6-37
Internal Units 4-7,A-15
Interword spacing (Tag 421) 6-24
J
JOB command, PJL 2-8,2-11-2-12
Job Control Example 3-23
Job Offset 2-31
Job Offset, Example 2-32
Job setup 2-1, 2-13, 13-2
For PJL printers 2-5
LaserJet 4 printer 2-22,2-26
LaserJet IlISi printer 2-16
Non-PJL printers 2-6, 2-13
Tips 13-2
Job setup commands
Number of copies 2-5
Reset 2-5
Justifying Text 5-14
Example 5-15
Using Relative Positioning Commands 4-6

Index-7

K
Kern pairs 6-83, G-2
Kern pairs (Tag 439) 6-29, 8-7
Kern Value 6-72
Kerning 6-29, 6-31, 6-33, 6-96
pair 6-97
track 6-96
Kerning information 6-29, G-1
kernPairs 6-72
L
Label origin 1-8
Label Origin (LO) Command 10-17
Label Origin (PCL-Compatible 10-1
Label Terminator 10-17
Labels (Text) 10-11
Landscape Orientation 3-9
Language reset 2-11
Language switching 2-2
Example 2-20
Language switching, example 2-20
LaserJet 4 features 1-10
LaserJet 4 HP-GL/2 features 10-1

LaserJet 4 printer 2-1,2-12, 2-34, 4-8, 5-1 - 5-2,
5-9 - 5-10, 5-12, 9-12, 9-15 - 9-16,
10-1, 10-6, 10-12, 11-14, 12-1, 12-6,
13-2-13-3, 13-5, 13-10, 14-3, A-1,
A-11, A-14, A-16, D-1, E-7

managing fonts 5-9
LaserJet 500 PLUS printer 2-31
LaserJet Feature Comparison Matrix A-1
LaserJet II/IID 9-5
LaserJet II/1ID printers A-1

LaserJet lI/IIID printers
LaserJet IIIP printer

A-1, E-7

1-5, 5-2, 9-5, 9-12, 9-16,
11-14, A-1, D-1, E-7
minimizing memory requirements 9-12
LaserJet IlISi printer 2-1, 2-31, 5-12, 9-16, 13-2,
13-10, A-1, A-14,E-7

LaserJet IIP 9-5
Last code parameter D-9
Latin complement D-9
Leading

Example 5-17

See Vertical Line Spacing

See also VMI
Left extent (Tag 435) 6-28, 6-72, 8-6
Left Margin

8-Index

Controlling 3-19

Example 3-19
Left Side Sector Values 6-72
Legal-Size Page

Selecting, Example 3-4
Legal-Size Pages

Example 3-10
Legal-Size Paper

Selecting 3-3
LF 2-4
Library files 6-81, 7-5, 7-10, 8-1, C-2
Limits, Vector Graphics 10-9
Line Ends 13-11
Line feed 2-4,3-17,4-1
Line Joins 13-11
Line Spacing

Adjusting 5-17

Calculating VMI 5-18

Effect on Top Margin 3-15

Recommended (Tag 422) 6-70
Lines Per Inch

Effect on Cursor Positioning 4-9
List Available Typefaces C-12
List Symbol Set Abbreviations C-12
list_symbols C-12, C-16
list_types C-12
LO (Label Origin) Command 10-17
Loader 7-2,7-6, 7-11
Loader program 7-7
Locking out features 2-13, 2-16, 2-24

Avoiding 13-2
Logical Page 3-1, 3-4, 10-7, 10-9, A-17

Default 4-13

Defaulted 3-9

Definition 3-4

Related to Margins 3-13

With Respect to Physical Page A-17
Lossee/Lossless Compression A-11
Lower Case Ascent (Tag 427) 6-70
Lower Case Descent (Tag 428) 6-71
Lowercase accent height (Tag 432) 6-26, 6-71, 8-6
Lowercase ascent (Tag 427) 6-25, 8-5
Lowercase descent (Tag 428) 6-25, 8-5
LT (Line Types) Pattern Length 10-11

M
Macro
Automatic Overlay 12-3
Call 12-2
Execution 12-2
Macro cartridges 1-9, 4-16, 12-2
Macro Control Command 12-4
Macro Management 12-4
Macro SIMMs 12-2
Macros 2-8, 4-10, 12-1
and Display Functions Mode A-16
and Font Management Commands A-16
Cartridges 4-16, 12-2
Creating 12-2
General Management 12-4
Macro cartridges 19
Nesting 12-7
Permanent vs. Temporary 12-4
Priority 12-6
SRTool F-7
Summary of Rules 12-6
Tips for Efficient 13-12
Use of HP-GL/2 in 1-8
using HP-GL/2 in 12-1
When to Use 12-1
Manual Feed 3-1
Manual Organization 1-1
Margins 3-1, 3-13
Bottom 3-13
Defaulted 3-9
Left 3-19
Right 3-20
Right (Example) 3-20
Top 3-15
Translated With Print Direction 3-11
Marie C-1
Master Symbol List (HP MSL) table H-1
MasterType Font Cartridges 6-48
Math characters D-9
Matrix
LaserJet Feature Comparison A-1
LaserJet Feature Support A-1
Maximum Kern Value 6-73
Maximum Point Size 6-73
Maximum width (Tag 420) 6-23, 6-70, 8-4
Memory
and Performance A-10
Effect of Auto-Rotation on A-11
Memory usage 2-33, 2-35

HP-GL/2
Print protection
menu
Menu reset, control panel
Merging Text with HP-GL/2 Graphics
Merging Text With Raster Graphics
Metric units
Microsoft Windows
Minimum Kern Value (refer Tag 441)
Minimum Point Size
MIO
Mirroring Fonts (Example)
Misalignment
Paper Registration Tolerance
Mode 0 compression
Mode 1 compression
Mode 2 compression
Mode 3 compression
Mode 5 compression
Mode20ut()
Mode30ut()
mode_0_2 3 PCL()
mode_0_2 PCL()
mode_0_PCL()
Modified Print Environment
Modular I/O
Moving to the Right-Most Position
Example
MSL (see HP MSL)
Multi-User Environment
and Downloading Fonts
Multiple copies
Multiple Orientations on a Page
Example
Multiple Print Directions

N

Nesting Macros

Networks

NEXT_NAME

NEXT_NUM

Nominal point size (Tag 407)
Non-zero Winding Fill Type
Number of Characters
Number of copies

Number of copies command
Number of Kern Pairs
Number of Sector Kern Characters

10-12
2-33
C-12
2-11
10-14
9-17
6-11
7-13
6-73
6-73
A-14
B-6

3-8
E-5
E-5
E-6
E-6
9-5, 9-12, E-6
E-9

E-7

E-7

E-7

2-8, 12-2
A-14

4-13
D-3
5-3

5-12

2-30

3-11
1-8

12-7

2-35

C-15

C-15

6-14, 6-70, 8-2
1-10, 10-1
6-70

2-13, 2-16, 2-24, 2-30

1-10
6-72
6-72

Index-9

Number of Sectors per Character 6-72

Number of Symbol Sets (Tag 404) 6-70
Number of Tracks 6-72
@)
Offset, Job 2-31
Opaque
Pattern Transparency Mode 11-4
Source Transparency Mode 11-3
option_list C-14
Organization, Manual 1-1
Orientation 2-15, 2-18, 2-20, 2-27, 2-29, 3-1
Affect on Fonts 5-13
Changing 3-9
Effects on Margins 3-11
Example (Changing) 3-10
Four Choices 3-9
Printing Multiple Orientations on Same Page 3-11
Sending the Command at Page Start 3-9
Orientation (glue file) 6-43
Orientation Interactions, PCL & HP-GL/2 10-7
Orientations, rotating 1-8
Output Bin Selection 2-31-2-32
output_dir C-8
output_file C-8, C-17
Overlaying a Macro 12-3
Overriding control panel setting-13, 2-16, 2-24, 2-37
Overview of Manual 1-1
P
P1/P2 10-10
PackBits (TIFF) Encoding 9-7
Example 9-8
PackBits Compression (Example) B-10
Page
Logical 3-4
Physical 3-4
Page Boundaries
Crossing with Raster Graphics A-18

Page Control Commands
See Page Setup

Page Eject

Unexpected (Solution for) 14-4
Page Length

Defaulted 3-9

Using to Set Page Size 3-2
Page Length Command 3-3

10-Index

Definition of Unsupported A-17
Example 3-4
See also Page Size Command

Page protection 2-34,10-12, 13-3

LaserJet 4 13-12
Page Setup 3-1
Example 3-23
Tips for Effective 13-4
Page Setup Commands 2-5,2-15
Margins 2-5
Page size 2-5
Paper size/Paper Length 2-5
Paper source 2-5
Text length 2-5
Page Size
Command 3-2
Defaulted using Page Length Command 3-2
Selecting 3-2
Setting Using Page Length Command 3-3
Page size command 2-15, 2-18, 2-20, 2-27, 2-29
Definition of Unsupported A-17
Example 3-3
Recommended 3-2
Using 3-2
Page-Size Independent Plots 10-10
Pair kerning 6-30, 6-97, G-2
PANOSE Information (Tag 443) 8-7
PANOSE numbers (Tag 443) 6-36, 6-88
PANOSE.IF file 6-88
Paper Path and Cursor Placement 4-16
Paper Registration Tolerance 3-8
Paper Size 3-1
Physical Page 3-4
Paper Source 3-1
Example 3-1
Selecting 3-1
Partial Pages
Solution for Printing 14-4
Pattern 11-1
for Print Model 11-1
Pattern reference point 11-15
Pattern Transparency Mode 11-1-11-2, B-3
Example 11-5
Pattern-Filled Raster Graphics, Example 11-8 - 11-9
Pattern-Filled Type, Example 11-11
Patterning Images 11-7
Patterns, Filling Images With 11-7
Patterns, User-Defined 10-2,11-13
PCL bitmap files 6-81, 8-1
PCL char D-8

PCL Coordinate System 4-4
PCL Job setup commands 2-5
PCL Mode 4-4
PCL num D-8
PCL Picture Frame 10-3, 10-7, 10-9
PCL Printer Language 1-6
PCL soft fonts (glue file) 6-37
PCL status readback 5-10, F-10
PCL Units 1-10, 4-7 - 4-8, 8-8, A-15
Using for Cursor Movement 4-8
PCL value 6-79
PCL2BIN.EXE E-2
pclwrite() E-6
PE (Polyline Encoded) Command 13-11
Pen Location 4-3
Pen Up (PU) Command 10-17
Pen Width Selection Mode
Relative vs. Metric 10-11
Perforation Skip Mode 3-7,4-5
Perforation Skip Region 3-16 - 3-17, 4-5
Performance
and Memory A-10
Font Support Tips 13-9
Increase Using HP-GL/2 PE Command 13-11
Increase with Macros 12-1
Tips for Font Selection 13-8
Tips for Raster Graphics 13-9
Vector-Processed Fonts 10-15
Perishable data 2-34
Permanent Fonts 5-11
Downloading 5-11
Permanent Fonts vs. Temporary Fonts 5-12
Personality 2-4
PERSONALITY variable 2-24
Physical Job Offset 2-31
Physical Page 3-1,34
Definition 3-4
Physical Page Size 3-2
Picture Frame 10-3, 10-7
Anchor Point 10-4, 10-7
HP-GL/2 10-2
Scaling 10-18
Scaling Factor 10-3
Units 10-11
Picture Presentation Directives 10-2
Pie Chart B-9
Pitch 5-6, 6-74
and Scalable Typefaces 5-6
Pixels 6-65, 11-1, 11-3

PJL 2-1, 2-3,2-5, 13-4

and perishable data 2-34
Command listing A-9
Command prefix (@PJL) 2-26
Commands 2-4
ENTER command 2-18, 2-24, 2-34
ENTER LANGUAGE command 14-4
INFO ID command A-16
INITIALIZE 2-7, 2-11
INQUIRE command 2-26
Job setup 2-5
JOB/EOJ commands 2-8
SET command 2-8 - 2-9, 2-23, 2-26,
2-34, 13-3, 14-3
Status readback F-13
Support 1-9-1-10
Syntax 2-4
USTATUS command 13-4
PJL COMMENT Command 2-4
PJL Current Environment 2-11
PJL ENTER command 2-4
PJL-specific problems 14-3
Plot Size, HP-GL/2 10-11
Plotter Units 4-10
HP-GL/2 10-11
PLU4-10
Point (Tag 406) 8-2
Point Size 6-75
Adjusting Line Spacing For 5-17
and Scalable Typefaces 5-6
Command 5-2
Glue file 6-43
Tag 406 6-70
Point, exact size (Tag 406) 6-14
Portrait Orientation 3-9
Positioning Units 4-7
PostScript 2-1
Posture 6-76
Power cycling the printer 2-11
Presentation Mode, raster graphics 3-9, 9-13
Primary and Secondary Fonts 5-8
Print data 2-5
Print Direction
Defaulted 3-9
Example B-1
No Affect on HP-GL/2 Orientation 10-8
Print Direction Command
Example Using 3-11
Using 3-11
Print directions, Multiple 1-8

Index-11

Print environment 2-7
Print environment hierarchy 2-9
Print file structure 2-3,2-6
PRINT FONTS

and Automatic Reset A-16
Print job setup 2-1
Print Model 9-1,11-1

How it Works 11-3

Printing Rules (Example) B-3

Rectangular Area Fill 11-5

Tips For Efficient Use 13-10
Print Model, The 1-9
Print Model, User-defined patterns 11-13
Print Overrun (Error 21)

and HP-GL/2 13-12
Print overrun protection 2-33
Print Quality

of HP-GL/2-Processed Fonts 10-15
Print-and-Space 3-20, 4-1, 4-5
Print-and-Space Cursor Positioning

Example 4-5
Print-and-Space Formatting 3-17

Example 3-18
print_error C-12, C-17
Printable Area 3-1,3-4

Actual 3-4

Definition 3-5
Printable Limits 3-4

Example 3-7
printCharacterMetrics 6-71
Printer errors

Error 20 (memory overflow) 2-35

Error 21 (print overrun) 2-33
Printer Job Language (PJL) 1-9,2-1
Printer language reset 2-11
Printer language switching 2-2,2-4
Printer personality 2-4
Printer-specific commands, LaserJet IlISi 2-31
printGeneralinfo 6-69
Printing

Limits 3-4
printKerninginfo 6-72
printSymbolMSLInfo 6-71
printSymSetinfo 6-71
printTFMType 6-69
printTypefaceMetrics 6-70
Problems

Data Saturation 14-3

Error 20 14-1

Error 21 14-3

12-Index

Floating CAP A-12

HP-GL/2 Images Not Printing Properly 14-5
Missing Graphics Along Page Edge 14-1
Not Enough Memory 14-1
PJL-specific 14-3
Print Overrun 14-3
Printing Partial Pages 14-4
Reset Deleting Fonts/Macros 14-3
Solving common 14-1
Text in Unexpected Position A-12
With Missing Characters 14-1
Programming Tips 13-1
Properly formed jobs 2-2
Proportional spacing 6-18
Push/Pop Cursor Position 4-10
Example 4-10, 12-3
R
R.C
the Rambo Shell Program C-12
Example Implementation C-12
R.EXE C-12
Rambo 7-3,7-5-7-7
command line C-5
Error Codes C-9
Example Implementation (R.C) C-12
function of C-2
parameters C-5
related files C-3
shell program C-3
Using C-1
Rambo Program Code 7-11
Rambo Shell Program C-12
list_types C-15
Command-Line Usage C-12
Make a Scalable Font File C-16
Show a List of Symbol Sets C-16
Show a List of Typefaces C-12
Show Command-Line Usage C-17
RAMBO.EXE
File Size C-3
Raster Compression 9-3
Raster Compression Modes 9-5
Raster compression, optimizing E-1
Raster Data
Delta Row Compression 9-8
Delta Row Compression (mode 3) 9-5
Run-Length Compression (mode 1) 9-5

Run-Length Encoding 9-6

Simple Binary Transfer 9-5
TIFF (PackBits) Compression (mode 2) 9-5
TIFF (PackBits) Encoding 9-7
Uncompressed 9-5
Raster Data Compression 9-2
Performance 9-15
Raster graphics
Across Page Boundaries A-18
Adaptive Compression 9-12
and Print Model (Example) B-10
Auto-Rotation 9-20
Compression (Examples) B-10
Cursor Positioning 9-17
Data compression 1-8
Introduction 9-1
Merging With Text 9-17
Presentation Mode 3-9
Tips for Efficient 13-9
Using 9-3
When to Use vs. Vector 10-6
Raster Graphics Picture 9-1
Raster Graphics System 9-1
Raster graphics, end 9-16
Raster Height 9-3
Raster Height Command 9-1
Raster Presentation 9-3
Raster Resolution 9-3
Raster Width 9-3
Raster Width Command 9-1
Rasterizing the page 2-33
READER.EXE 6-55, 6-68, 6-102
File Size 6-55

Recommended line spacing (Tag 422) 6-24, 6-70, 8-4
Rectangular Area Fill

Example 11-5
Rectangular Area Fill (Rules)

Using 11-5
Relative Character Size (SR) 10-10, 10-18
Relative Cursor Positioning 4-6
Relative Plot

See Page-Size Independent Plots
Relative Scaling 10-20
Replacement Byte

Delta Row Compression 9-8
requirements parameter D-9
Reset 2-8, 2-15, 2-19, 2-27, 2-29, 2-37

Overriding the control
panel settings 2-13, 2-16, 2-24
Reset and the UEL command 2-5

RESET command, PJL
RESET MENU
Resets
Resident Fonts
Scalable
Resolution
600 dpi
Resolution enhancement
Resource (glue file)
Resources for adding Intellifont
Return codes, Rambo
Return Model Number Command
Reverse Landscape Orientation
Reverse Portrait Orientation
Reverse Type
Example
Right extent (Tag 436)
Right Margin
Controlling
Right Side Sector Values
RO (Rotate) Command
Rotating Fonts
Effect on Memory
Rotating Fonts (Example)
Rotating Fonts at Any Angle
Example
Rotating Orientations
Rounding
Rules
for Macros
See Rectangular Area Fill
Run length encoding
Run-Length Compression
Run-Length Encoding
Example
Run-Length Encoding (Example)

S

Sample glue file
Saving the Cursor Position
Saving/Restoring the Cursor Position
Example
SC (Scale) Command
Scalable disk-based fonts
Scalable Font File
Making (M.C)
Scalable Fonts
Unbound

2-11
2-7,2-11
2-16
6-48
6-48
1-10, 13-3
13-3
13-3
6-40
7-10

C-9

A-16

3-9

3-9

11-10
6-28, 6-72, 8-6

3-20
6-73
10-7

A-11
B-7

10-16
1-8
4-9

12-6

E-5
9-5
9-6
9-7
B-10

6-45
4-10

4-10
10-16
6-54

C-12

1-7,7-3
C-2

Index-13

Scalable Internal Typefaces 6-48
Scalable Typeface Products

Screen Fonts for 7-14
Scalable Typefaces 5-2, 6-47 - 6-48

Example 5-3

Unbound 5-2
Scaled Mode

HP-GL/2 10-10
Scaling Factor

Picture Frame 10-3
Scaling Factor and Picture Frame

HP-GL/2 10-10
Scaling Fonts 3-12, 5-13

Anisotropically 10-18
Scaling Fonts (Distorted)

See Anisotropic Scaling
Scaling Mechanism 10-11
Scanned Images 10-6
Screen Font Formatter 7-11
Screen font licensing 7-14
Screen Fonts 7-13-7-14
SD (Standard Font Definition) Command 10-17
Second Character Index 6-72
Sector kern information (Tag 440) 6-31, 8-7
Sector kerning G-3
sectorKernChar 6-72
Seed Row 9-8

How Y Offset Affects 9-10
Select Standard Font (SS) Command 10-17
Selecting a Page Size 3-2
Selecting a Paper Source 3-1
Selecting Fonts 5-2
Selecting Fonts by Characteristic 5-3

Example 5-5
Selecting fonts using TFM data 6-73
Selecting Legal-Size Paper

Landscape Orientation 3-3
Selection string 6-35
Self Test

and Automatic Reset A-16
Semi-graphic characters D-9
Serif style (Tag 415) 6-20, 6-70, 8-3
SET command, PJL 2-8 - 2-9, 2-23, 2-26,

2-34,13-3, 14-3

Setting up a print job 2-1

Example 3-23
Setup

Tips for Efficient Job 13-2
Shell

the Rambo Shell (M.C) C-12

14-Index

Shift In/Shift Out 5-8

for Performance Increase 13-8
S| (Absolute Size) Command 10-18, B-6, B-8
S| Command 10-11
SIMM-based macros 12-2
Skew 4-16
Slant (glue file) 6-43

Slant (Tag 413)

6-18, 6-70, 6-75, 8-3

soft fonts (glue file) 6-37
Soft-Clip Limits 10-9
Source Image 11-1-11-2
Source Transparency Mode 11-1-11-2, B-3
SP (Select Pen) Command 10-16

Spacing (Tag 412)
Special Characters
Accessing
SR (Relative Character Size)
SR (Relative Character Size) Command
SR (Relative Size) Command
SRTool

Break points

Byte counters

Carriage return settings

Checking the input buffer

Clearing windows

Configuration

Data pacing

Display windows

Displaying line status

Displaying printer data

DOS command line

Error handling

Exiting

Files menu

Initialization

Installing

Macros

Menus

Options menu

Output files

PCL macros

PCL status readback

PJL macros

PJL status readback

Record files

Requirements

Running

Scopy

User interface

User-defined escape sequences

6-18, 6-70, 6-74, 8-3

5-18
10-10
10-18

B-8
F-1

F-23

F-25

F-23

F-24

F-24

F-2
F-24
F-5
F-25
F-24
F-7
F-6
F-9
F-18
F-2
F-2
F-7
F-8

F-18

F-22

F-14

F-10

F-17

F-13

F-22

F-1
F-2
F-7
F-5
F-12

Using mouse F-9

SS (Select Standard Font) Command 10-17
Standard Font Definition (SD) Command 10-17
Start Graphics 9-3
Status readback 2-22 - 2-23,5-10
Status Readback Tool (SRTool) F-1
Stencil 11-2
Stroke weight 6-78
Stroke weight (glue file) 6-43
Stroke weight (Tag 411) 6-17, 6-70, 8-3
Structure 6-77

Structure, print file
See Print file structure
Style 6-75

Subfile type (Tag 400) 6-11, 8-1
Supporting TFM

Benefits of 6-50
Sv22 10-2
Switching printer languages 2-4
.SYM files D-6
SYM file parameters D-8
Symbol map (Tag 403) 6-12, 6-71, 8-2

Symbol set 2-15, 2-19 - 2-20, 2-27, 2-29, 6-74, 6-83

Abbreviations C-12
Default A-14
Definition File D-2
Definition file, creating D-6
Directory (Tag 404) 6-12, 8-2
Downloadable D-1
Files 7-11
Glue file 6-42
Index Array 6-71
Index Array Offset 6-12
Maps 7-7,7-11, C-9
Name (Tag 404) 6-71
Name Offset 6-12
Selection String 6-71
Selection String Offset 6-12
Symbol set directory (Tag 404) 8-2
symbol_set_dir C-8
symbols parameter D-10
SymSet C-7
Syntax
HP-GL/2 14-5

T

Table, Character number (HP MSL) H-1
Tag descriptions, TFM 6-11
Tagged Font Metric files (TFM files) 1-7,6-1
Tagged Image File Format (TIFF) Compression 9-5
Tagged Image File Format (TIFF) Encoding 9-7
Temporary Fonts vs. Permanent Fonts 5-12
Terms and Conventions, Manual 1-6
Testing data, FASST E-11
Text Area
Managing 3-13
Text Justification 5-14
Text Length 3-16
Defaulted 3-9
Defaulted with Top Margin Command 3-16
Text length (FORMLINES) 2-29
Text Readability 5-17
TFM
adding new tags 6-89
glue file 6-37
TFM Data 3-20
Accessing Example 6-63
Printed to ASCII File 6-56
Using in Calculations 6-64
TFM data flow 6-85
TFM Data Structure 6-56
Accessing the 6-62
Examples 6-63
Printing to ASCII File 6-68
Reading 6-68
Typeface Sub-structure 6-62
TFM data types 6-9
TFM directory structure 6-6
TFM file structure 6-2
TFEM files 6-1, 6-55, 7-5, 7-10
Creating 6-81
Naming Convention 6-67
Supplied 6-66
TFM files, major format version 6-4
TFM header structure 6-3
TFM path (glue file) 6-43
TFM Reader 6-1, 6-52, 6-54, 6-56
Data Flow 6-59
Example Implementation 6-55
for Hard-Coding Data 6-52
for Horizontal Escapement 5-14
Modifying the 6-61
READER.EXE 6-55
Sample TFM Implementation 6-68

Index-15

Source/Executable Code
Using the
TFM Reader Integration
Available Tools
TFM Reader Program
Functions of
TFM Support
Benefits of
Hard-Coding TFM Data
Levels of
TFM Reader Integration
TFM tag descriptions
TFM tag entry structure
TFM Tags
Descent
TFM Type (Tag 400)
TFM usage
TFM Writer
compiling
modifying
TFM Writer for TrueType
compiling
generating
The Print Model
See Print Model
TIFF (PackBits) Encoding
Example
TIFF Compression
Example
TIMEOUT variable
Tips
for Page Setup
for Print Model
for Using Macros
for Vector Graphics
Tips for Effective Programming
Top Margin
Controlling
Default
Top-Most Position
Placing Text at
Track kern information (Tag 441)
Track kerning
Track Value
trackKern
Transfer Raster Data
Transparency Modes
Transparent
Pattern Transparency Mode
Source Transparency Mode

16-Index

6-55
6-58
6-52 - 6-53
6-55

6-56

6-50
6-52
6-52
6-53
6-11

6-7

4-15

6-69

6-10

6-81 - 6-82
6-100

6-88

8-10

8-12

8-12

9-5
9-8
E-6
B-10
2-24

13-4
13-10
13-12
13-11

13-1

3-15
3-15

4-12
6-33, 8-7
6-96, G-6

6-73

6-73

9-3,9-5

11-1

11-4
11-3

Transparent Print Data

Accessing Special Characters 5-18

Example 5-19
TrueType 5-1, 6-47, 6-81
TrueType (AutoFont Support) 8-1
Turkish characters D-9
Two Orientations on a Page

Example 3-11
Type Director 6-48, 6-53, 7-4, 7-6, C-9, D-3
Type file (glue file) 6-43
Type structure (Tag 410) 6-16, 6-70, 6-75, 8-3
Type style (Tag 416) 6-21
Typeface (glue file) 6-43
Typeface (Tag 417) 6-21, 8-3
Typeface (Tag 442) 6-79
Typeface family name (glue file) 6-38
Typeface family number (glue file) 6-38
Typeface Name (Tag 417) 6-69

Typeface selection string (Tag 442) 6-35, 6-69, 8-7

Typeface source (Tag 418) 6-21, 6-69, 8-4
TYPEFACE.TD C-12 - C-13
typeface_dir C-7
Typefaces

List Available C-12
Typefaces, Scalable 6-48
typeutil C-12

Five Functions C-14
U
UEL command 2-11 - 2-12, 2-18, 2-28, 14-3
Unbound scalable fonts C-1-C-2
Unbound scalable typefaces 5-2
Unbound symbol set 5-2
Underline

Floating 5-19
Underlining 5-19

Underscore Depth (Tag 429) 5-19, 6-26, 8-5
Underscore Thickness (Tag 430) 5-19, 6-26, 6-71, 8-5
Unicode 8-2
Unique Association ID (Tag 405) 6-14, 6-69, 8-2
Unit of Measure command 1-10, 4-7 - 4-8, 6-65, 8-8

Unit of measurement for TFM data 6-11
Units
HP-GL/2 10-11
Internal A-15
PCL A-15
Plotter Units 4-10
Units of Measure command 1-10

Units of Movement 4-7
Universal Exit Language 13-2
Universal Exit Language (UEL command) 2-11
Unprintable Region 3-5, 4-11

Avoiding (Example) 3-17
Unsolicited status 13-4
Unsupported Page Length/Size Commands A-17
Uppercase accent height (Tag 431) 6-26, 6-71, 8-5
User Default Environment 2-11
User Units

HP-GL/2 10-11
User-Defined Patterns 10-2, 11-1, 11-13

Example 11-14
User-defined symbol sets D-1
Using Primary and Secondary Fonts

Example 5-8
Using Rambo

Example #1 C-8

Example #2 C-8

Example #3 C-9
Using Rows and Columns 4-9
Using This Manual 1-1
USTATUS command, PJL 13-4
\Y
valid_symset C-12, C-17
Vector Graphics

See HP-GL/2

Tips for More Efficient 13-11

When to Use vs. Raster 10-6
Vector Graphics Limits 10-9
Ventura Publisher 7-13
Vertical escapement (Tag 434) 6-28, 6-72, 8-6
Vertical Motion Index 3-22,4-9

Calculating 5-18

Example 5-17
Video Interface A-14
VMI 3-3, 3-22

Calculating 5-18

Defaulted 3-9
VMI (Vertical Motion Index) 2-15, 2-18, 2-20
VMI Command 3-2

W

Well-formed jobs

White Rule (Example)

Width)

Word processing

Working With Fonts

WU (Pen Width Selection Mode)
WYSIWYG

X

x-height (Tag 424)
Xerox Ventura Publisher
Xheight (Tag 424)

Y

Y Offset
Y Offset Command
For Performance Increase

Z

Zapf Dingbats

2-2
B-3
6-76
2-30
5-14
10-11
7-1

6-24, 8-4
7-13
6-70

9-4
9-3
13-9

D-9

Index-17

