
Hewlett-Packard Company Confidential

PCL 6PCL 6
A White Paper

H
3000 Hanover Street
Palo Alto, California 94304 USA
Telephone: (415) 857-1501

Hewlett-Packard Company Confidential

*** NOTICE ***

HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, REGARDING THE SOFTWARE OR TECHNICAL
INFORMATION. HEWLETT-PACKARD COMPANY DOES NOT
WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS
REGARDING THE USE OR THE RESULTS OF THE USE OF THE
SOFTWARE OR TECHNICAL INFORMATION IN TERMS OF ITS
CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR
OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THE SOFTWARE OR TECHNICAL INFORMATION IS
ASSUMED BY YOU. The exclusion of implied warranties is not permitted by
some jurisdictions. The above exclusion may not apply to you.

IN NO EVENT WILL HEWLETT-PACKARD COMPANY BE LIABLE TO
YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT
DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION AND
THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE
SOFTWARE OR TECHNICAL INFORMATION EVEN IF HEWLETT-
PACKARD HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. Because some jurisdictions do not allow the exclusion or limitation
of liability for consequential or incidental damages, the above limitations may not
apply to you. Hewlett-Packard liability to you for actual damages from any cause
whatsoever, and regardless of the form of the action (whether in contract, tort
including negligence, product liability or otherwise), will be limited to US $50.

Copyright  1995,1996 Hewlett-Packard Company. All rights reserved.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
iii

Table of Contents

1.0 INTRODUCTION TO PCL 6 ...1

1.1 THE CHALLENGE OF DIGITAL IMAGE COMMUNICATION ...1
1.2 A SOLUTION TO THE IMAGING CHALLENGE...2
1.3 DESIGN GOALS OF PCL 6 ...3

1.3.1 Make Electronic Imaging Simple...3
1.3.2 Enable Highest Image Quality and Device Independence..3
1.3.3 Make Electronic Imaging Efficient and Fast ...3
1.3.4 Provide for Easy and Compatible Future Enhancements ...3

2.0 PCL 6 BASIC CONCEPTS...4

2.1 PCL 6 STREAMS: A PORTABLE UNIT OF IMAGING WORK ..4
2.2 STREAM OBJECT STRUCTURE ...5
2.3 USER-DEFINED STREAMS ...6
2.4 SESSIONS...7
2.5 USER COORDINATE SYSTEM ...8
2.6 STREAM SOFTWARE DEVELOPERS KIT ..9

3.0 THE PCL 6 TOOLBOX ...10

3.1 THE PATH OBJECT ...11
3.2 PATH OBJECT OPERATOR LISTING ..12
3.3 PAINT SOURCES ...13

3.3.1 Color Objects...13
3.3.2 Device-Independent Raster Patterns...13

3.4 THE PEN OBJECT ...14
3.5 PEN OBJECT OPERATOR LISTING ..15
3.6 THE BRUSH OBJECT ...16
3.7 BRUSH OBJECT OPERATOR LISTING ..17
3.8 TEXT OPERATORS ..18
3.9 CURRENT FONT OPERATOR LISTING ...19
3.10 DEVICE-INDEPENDENT BITMAP OBJECTS...20
3.11 DEVICE-INDEPENDENT BITMAP OPERATOR LISTING...21
3.12 THE CLIP PATH OBJECT..22
3.13 CLIP PATH OBJECT OPERATOR LISTING...23
3.14 ROTATE AND TRANSFORM CONCEPTS ...24
3.15 PAGE ROTATE AND TRANSFORM OPERATOR LISTING ...25
3.16 RASTER OPERATIONS ...26
3.17 RASTER OPERATOR LISTING ...26
3.18 GRAPHICS STATE OBJECT ...27
3.19 GRAPHICS STATE OBJECT OPERATOR LISTING...27

4.0 PCL 6 OPERATOR AND ATTRIBUTE LIST DESIGN...28

4.1 OPERATORS ...28
4.2 PCL 6 ATTRIBUTE LISTS..28
4.3 VARIABLE-LENGTH ATTRIBUTE LISTS ..29
4.4 SIMPLE OPERATOR EXAMPLES ..30

5.0 PCL 6: A MATCH FOR COMPLEX GRAPHICS IMAGING...31

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
iv

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
1

1.0 Introduction to PCL 6

1.1 The Challenge of Digital Image Communication
Imagine it is the year 2000. You’re an application-developer or application driver-writer.
Your goal is to implement the most efficient and highest quality solution to communicate
images among applications and digital printing or display devices.

You know the images to be transmitted to the device may be full of: (1) characters
needing exact positioning and precise rendering; (2) scanned images with a variety of
color and contrast characteristics; and (3) special effects such as gradient-color or gradient
gray-scale regions of arbitrary shapes.

You also know that print quality and performance are key to customer satisfaction for the
imaging solution. Customers depending on your solution spend tremendous amounts of
money to create documents, pamphlets, and other material for business communication.
Loss of image quality in the transmitted image is highly undesirable. You also want to
take advantage of the best imaging resolution of the customer’s target device.

Some graphics languages such as PostScript and PCL 5e often used for transmitting
images were originally developed for the simpler printing needs of nearly two decades
ago. To use either of these languages you’ll need to emulate and compensate in your
application or driver for graphic capabilities or graphics processing power missing in the
languages. You hope that your emulations and work-arounds for PostScript and PCL 5e
provide the quality you need and eventually match what the user sees in the original soft
version of his or her document on the video display. You’re concerned about the risk of
your undertaking.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
2

1.2 A Solution to the Imaging Challenge
Imagine now that you have a complete solution for imaging your documents. This
solution combines the best graphics capabilities of PCL 5e and PostScript with new
imaging features for graphical user interfaces in a device-independent and extendible form.
This solution you’ve found for digital imaging is called “PCL 6.”

PCL 6 is a system for communicating graphics and text among computers and digital
imaging devices. PCL 6 has two components that are built upon a device’s primitive
imaging engine. These components are depicted in the illustration below.

Device Internal Imaging Engine

PCL 6 Graphics Engine

PCL 6 Imaging Protocol

The two key components of PCL 6 are:

1) An object-oriented imaging protocol designed for graphical user interface
applications hosted on environments such as Windows 9x, Windows NT,
OS/2, Macintosh O/S, etc.

2) And, a robust graphics engine for rendering text, vector graphics, and
scanned images received through PCL 6 objects.

The PCL 6 imaging protocol is a thin layer of software that translates graphical objects
received by the device into a form understood by the PCL 6 graphics engine. The PCL 6
graphics engine is designed for efficient rendering of all graphical objects into a form
supported by low-level, more primitive device imaging engines.

This document provides an overview of PCL 6 concepts. All PCL 6 devices conform to
the general concepts outlined in this document.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
3

1.3 Design Goals of PCL 6
The dramatic growth of graphics-capable applications has increased the ability of users to
create graphics-rich documents for printing and displaying. As the graphics complexity of
documents increases, the need for more efficient methods to communicate these
documents among applications and devices increases.

PCL 6 is specifically designed to increase the efficiency of communicating electronic
images among a wide range of current and future devices, including printers, fax machines,
copiers, software on-screen viewers, etc.

The overall design goals of PCL 6 are outlined below.

1.3.1 Make Electronic Imaging Simple
The set of object-oriented imaging tools in PCL 6 almost always provides the application-
writer or driver-writer with a one-to-one match between the application object to be
imaged and a PCL 6 tool to image the object. This reduces the amount of programmer
effort required and limits the number of errors made when describing images for a PCL 6
device.

1.3.2 Enable Highest Image Quality and Device Independence
The rich and device-independent set of PCL 6 tools helps reduce the need for ad-hoc
application or driver pre-processing and break-down of images due to language imaging
deficiencies. Reducing application or driver pre-processing and break-down of images is
especially critical for intelligent color or monochrome devices where device-internal
processing of the original image produces the best color or grayscale output quality.

1.3.3 Make Electronic Imaging Efficient and Fast
PCL 6 provides select tools such as arbitrary image clipping that may be used to reduce
the number of commands required to describe complex graphic images. Applications and
drivers using select PCL 6 tools over traditional PCL 5e tools may achieve dramatic
increases in imaging speed and significant decreases in memory requirements for complex
graphic images.

1.3.4 Provide for Easy and Compatible Future Enhancements
The object-oriented nature of PCL 6 allows commands to be “overloaded” and re-used.
Thus, new imaging extensions may be easily implemented for a given command by simply
adding and/or changing the structure of data provided to the command. All PCL 6
commands are reusable, extendible, and designed to insure backward compatibility of
function.

The design goals listed above form the foundation the all current and future design
decisions for PCL 6.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
4

2.0 PCL 6 Basic Concepts

2.1 PCL 6 Streams: A Portable Unit of Imaging Work
A PCL 6 stream is a self-describing package of PCL 6 commands and data. PCL 6 streams
may be sent to a device to image anything from a single scanned image, a whole
document, or an entire set of documents.

A PCL 6 stream is designed to be a universal and portable unit of imaging work. The
stream’s encapsulated, compact, and device-independent design make it suitable for a
wide variety of device imaging communications as illustrated below.

PCL 6
Stream

PC, Server, or Laptop to Device

PCL 6
Stream

Device to PC, Server, or Laptop

PCL 6
Stream

Device to Device

PCL 6
Stream

Among PCs, Servers, and Laptops
Device

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
5

2.2 Stream Object Structure
Most of today’s printers and fax machines accept a sequence of bytes over
a network, parallel, or serial port to describe a unit of imaging work to be
performed. On such devices, PCL 6 imaging is accomplished through an
encapsulated sequence of operations called a stream. A PCL 6 stream
contains a sequence of bytes that may instruct PCL 6 to image anything

from a simple graphical object (e.g. a string of text, an ellipse, or a logo) to entire
documents. For example, a stream may instruct a PCL 6 device to draw one or more of
the following:

♦ A clip-art figure

♦ A form

♦ A watermark

♦ A signature

♦ An entire page or entire document

♦ A series of documents

All operators in a stream body belong to a specific PCL 6 protocol class. The protocol
class specifies the set of operators and the capability of the operators in the stream.

The protocol class and revision number for the class are defined in the stream header,
preceding the stream body. Prior to executing the stream body, the device reads the
information in the stream header to understand if it has the ability to execute the class of
operators and data to come.

Some PCL 6 devices may be designed to accept streams with different protocol classes.
For example, one could envision a high-volume printer accepting a redirected stream from
a less-capable fax machine or from a stream produced by a scanner.

Stream Header

Stream Body

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
6

2.3 User-Defined Streams
The “parent” or top-level stream in PCL 6 is similar to a traditional print job. Lower-level
streams may be defined and referenced by name. These lower-level streams, called “user-
defined” streams, may contain any set of PCL 6 imaging operators and data and may be
stored and referenced in the device in RAM, flash, or disk.

ABC Company
55499 S. Winston Ave.
AnyTown USA 87777

ExecStream “Signature”

ExecStream “Standard Message”

ExecStream “Customer Greeting”

ExecStream “Customer Addr3”

ExecStream “Customer Addr2”

ExecStream “Customer Addr1”

ABC
Logo

ExecStream “Customer Name”

ExecStream “ABC Logo”
Customer
Name

Customer
Addr1

Customer
Addr2

Customer
Addr3

Customer
Greeting

Standard
Message

Signature

The illustration shows how user-defined streams may be used in the construction of
forms. The form is depicted as a large rectangular area on the left of the illustration. At
the right of the form there is a stream defined for each field in the form except for the
address of the originating organization (ABC Company).

The logo, signature, and standard message fields are captured as user-defined streams
since they will be used over and over again during forms imaging. New customer
information streams are downloaded prior to imaging each form. The field data in these
streams are imaged when the PCL 6 “ExecStream” operator is encountered for each
named stream.

Some versions of PCL 6 do not allow streams to be nested in order to avoid recursion.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
7

2.4 Sessions
The next level of structure in PCL 6 streams is the session. A
session defines the world coordinate system and other default
attributes for each one of the pages described during the session.
The user instructs PCL 6 to begin a new session in order to

perform imaging in the device. The user may only cause imaging to occur on a PCL 6
device during an active session. There may be multiple sessions per parent stream.

Begin
Session

Page
Description

Page
Description

End
Session

The illustration shows the relationship between sessions and page descriptions. The user
may only describe pages within session boundaries.

User interactions during a session are typically from the user to the device (i.e. all graphics
imaging operations). Interactions may also be initiated from the device to the user for
status or error reporting.

The operator to start a session has both required and optional attributes. PCL 6 devices
require a user resolution attribute to be given when a new session is started. This attribute
identifies the world coordinate system in which the user prefers to describe pages during
the session. The page coordinate system may be described in English units (inches) or in
Metric units (millimeters). The user units resolution for a session may differ from the
internal device resolution. This is because the user coordinate system of a session is
device-independent. See the Coordinate System section below.

"Start Your
Graphics
Engine!"

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
8

2.5 User Coordinate System
PCL 6 devices have a two-dimensional world coordinate system to specify the
location at which graphical objects are placed and painted.

x=0, y=0

in
cr

ea
si

ng
 Y

increasing X

The user coordinate system defaults are depicted in the illustration. These defaults are as
follows:

♦ The origin (x = 0, y = 0) is the “physical” upper left hand corner of page
♦ The x coordinate increases horizontally from left to right
♦ The y coordinate increases vertically from top to bottom
♦ The default scale of the x and y axis is set according to the session resolution

attribute given by the user when the session begins

Section 3 explains how the user coordinate system may be modified for special needs
during page description (see section on Rotate and Transform Concepts).

E

N

W

S

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
9

2.6 Stream Software Developers Kit
A goal for PCL 6 is to provide a software developer’s kit (SDK) compatible with all
current versions of PCL 6. The SDK includes a library that allows a developer to create
PCL 6 streams via simple application programming interfaces (APIs). This allows the
PCL 6 developer to concentrate on functionality and the building blocks of images instead
of language syntax and intricate byte sequences. The library also allows improvements to
the library’s use of the PCL 6 imaging protocol without affecting driver or application
code.

Application or
Driver

PCL 6 API Library

PCL 6 StreamNewStream
BeginSession
BeginPage
…
EndPage
EndSession
FinishStream

As depicted in the illustration, the PCL 6 API library may be called directly by application
or driver software to create PCL 6 streams. In most cases, there is a PCL 6 stream API
matching every imaging requirement of the application or graphical user interface.

Section 3 explains the basic PCL 6 toolbox for text and graphics imaging.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
10

3.0 The PCL 6 Toolbox

Pen and Br ush
Obj ects

ABC
Path Object Te x t

Operators

Clip Path
Obj ect

Bitmap and
Pattern
Obj ects

Rotate and
T r ansf orm
Operators

PCL 6 provides the image-creator with a comprehensive graphics toolbox. The
illustration above depicts the graphics tools available in PCL 6. Each tool and object in
the toolbox is described in the following sections.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
11

3.1 The Path Object
Most images used for business communications includes one or more
lines and/or curves. These regions are typically called vector regions.
Vector regions are described in PCL 6 using the Path Object. The
path object is designed for easy, fast, and efficient imaging for any
vector region, simple or complex.

A Path Description A Painted Path

The dashed-line symbol on the left of the illustration depicts a path object having a series
of connected lines and beziers to describe a closed vector region. The elements of the
path object are not visible on a physical page or display until the path object is painted. A
connected series of one or more lines and curves form a sub-path. A path object contains,
zero, one, or many sub-paths.

The symbol on the right in the illustration depicts a painted path where a brush was used
to fill the path with a pattern. When a path is painted, the device fills inside the path’s
lines and curves with user-selected paint and strokes paint along the lines and curves.
Filling and stroking sub-paths is controlled by pen and brush object settings in the current
graphics state (pens and brushes are described later).

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
12

3.2 Path Object Operator Listing

PaintPath

CloseSubPath

Path
Operators

NewPath

RoundRectanglePath

Path
Object
Class

RectanglePath

PiePath

SetCursor

LinePath

BezierPath

EllipsePath

ChordPath

The illustration depicts some of the operators for the path object. The PCL 6 developer is
not limited to simple line and bezier descriptions for paths. PCL 6 provides a rich set of
path primitives, matching the needs of graphical user interface applications for
WYSIWYG, efficiency, and performance.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
13

3.3 Paint Sources
A paint source defines the color or graphical pattern used to paint a path or text
object. A paint source associated with a pen is the source of a color object or
pattern for a stroking operation. A paint source associated with a brush is the
source of a color object or pattern for a filling or raster-coloring operation.

3.3.1 Color Objects
Color objects are conceptually a single color in a specific color space (i.e.
RGB, Gray, etc.). In a PCL 6 device, color objects are single values or an
ordered set of values that map to a specific color in the current color space.
These values may be associated with a pen or brush to define the color with
which a graphical object is painted.

The components of a color object must be compatible with the current (active) color
space. For example, a color object intended for use in an RGB color space, must contain
three ordered components, each representing a red, green, and blue intensity value. In an
RGB color space, a color object with the ordered values 0, 0.9, 0 would produce green
when used as a paint source. Color objects may also represent gray-scaled and mono-
toned colors.

A user-defined mapping into a color space may also be constructed using palettes.

3.3.2 Device-Independent Raster Patterns
Raster patterns are rectangular NxM source pixel regions used for
constructing primitive patterns. The pattern may be specified as a
device-independent bitmap. Once created, raster patterns may be
associated with a pen or a brush. A raster pattern used to fill the
elements of a path object is associated with a brush and tiled across
the inside edges of the object’s sub-paths. As raster pattern associated

with a pen is stroked along the edges of the sub-paths in a path object. Raster patterns are
provided for compatibility with graphical user interface environments such as Windows
3.1, Windows 95/NT, and OS/2.

PAINT
SOURCE

Color Object

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
14

3.4 The Pen Object

The Pen Object is used by the Path Object to stroke paint
(primary colors or patterns) along the path’s lines and curves.

Path Description Path Stroked with a Pen

The illustration depicts the results of painting a path object with the pen set to a
moderately wide line width and a black paint source. The following is a summary of the
key concepts behind the pen object.

♦ There is one pen defined to stroke the contents of a path object

♦ The color or pattern stroked along the edges of the object depends upon the paint
source currently associated with the pen

♦ If the pen is not associated with a paint source when an object is painted, no
stroking is performed

♦ The sub-paths in the path object are not destroyed when stroked, allowing the path
to be reused for later filling or raster operations

Bez i e r
path

pen

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
15

3.5 Pen Object Operator Listing

Pen
Operators

SetPenSource

Pen
Object
Class

SetMiterLimit

SetLineCap

SetLineJoin

SetLineDash

SetPenWidth

The illustration shows some of the operators for the pen object.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
16

3.6 The Brush Object
The Brush Object is used by the Path Object to fill the inside
region of the path’s lines and curves with paint. The filling
operation is executed when the path object is painted.

The brush object is also used as an operand for raster
operations (ROPs) during the process of imaging text, path,
and raster objects.

.

Path Description Filled Path

The illustration depicts the results of filling a path object with the brush set to a diagonal
pattern paint source. Note that in this example no pen was defined to stroke the edges of
the object. The following is a summary of the key concepts behind brushes:

♦ There is one brush defined to paint path, text, and raster objects

♦ The color or pattern filled or colored within the object depends upon the paint
source currently associated with the brush

♦ If the brush is not associated with a paint source when an object is painted, no
filling is performed

♦ The elements in the path object are not destroyed when filled, allowing the path
be reused for later stroking or raster operations

b r ush

ell ipse
path

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
17

3.7 Brush Object Operator Listing

SetBrushSource
Brush
Object
Class

Brush
Operator

The illustration shows the operator for the brush object.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
18

3.8 Text Operators

A PCL 6 device allows the user to place characters of a font anywhere
on the page and at any angle. The actual font technology available in the
device (TrueType, Bitmap, etc.) to render each character is protocol
class-dependent.

In PCL 6, each character is treated as an independent graphical object. Each character is
placed at the current cursor location prior to painting. The current cursor location is
defined or changed by graphics state operations, path construction operations, and/or
intermediate text placement operations.

PCL 6 imaging protocol allows many characters to be placed on the page in a single text
operator. The first character is placed at the current cursor. The remaining characters in a
multi-character operation are placed at corresponding escapements (character spacings)
provided by a parameter to the text operator. Each escapement for a character tells PCL
6 where the cursor should be relocated for placement of each character in succession.
The character spacings may be provided for both the current x- and y-axis in a single text
operator.

Character sizes are specified in user units. Painted characters are scaled and rotated
according to page coordinate transformation matrix (CTM) manipulations by the user (see
Rotate and Transform Concepts). Characters may also be rotated, scaled, and sheared in
an additive manner to the current page CTM by setting a separate character CTM. 8- and
16-bit character codes are supported.

ABC

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
19

3.9 Current Font Operator Listing

TextPath

Current
Font
Object
Class

Text
Operators

SetFont

SetCharAngle

SetCharScale

SetCharShear

SetCharBoldValue

Text

The illustration shows some of the operators for imaging text objects via the current font.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
20

3.10 Device-Independent Bitmap Objects
Bitmaps are rectangular raster regions, including scanned images.
Bitmaps may be single- or multi-bit-per-pixel, including color and contone
formats. Bitmap formats are device-independent and thus do not have to
be transmitted at device-resolution. Bitmaps may be scaled and halftoned

by PCL 6.

Size Submitted by User
@ 4 bits-per-pixel
72 pixels-per-inch

Desired Size
On Page @

600 pixels-per-inch

The illustration depicts an example where a 72 pixels-per-inch image is submitted to a 600
pixels-per-inch PCL 6 device. Assume the user also wants the image to be enlarged to fit
the desired area on the physical page. Two things must happen in the device: (1) the
image must be scaled-up to fit a larger area on the page and (2) the image must be
halftoned to simulate continuous levels of gray on the device. Image scaling and
halftoning in a device allows bitmap images that are different size and resolution in their
original form to be scaled to the appropriate size with good visual quality. Scaling-up
bitmaps in a device, instead of the application or driver, off-loads unnecessary work from
the user's computer by freeing-up the computer’s and I/O channels for useful work other
than scaling and half-toning the image. Allowing the device to scale and halftone bitmap
images assures device-best print quality for the image.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
21

3.11 Device-Independent Bitmap Operator Listing

Bitmap
Object
Class

Bitmap
Operators

BeginImage

ReadImage

EndImage

The illustration shows some of the operators for imaging bitmap objects.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
22

3.12 The Clip Path Object
The Clip Path Object allows the application or driver to constrain
areas in which marks may be imaged for path, text, and raster
objects. The clip path object may be set to any arbitrary set of
lines and curves defined by the current path object. The default
clip path object is the imagable area of a page.

The user may use clip path operators to confine painting operations to only the inside
region(s) or only the outside region(s) defined by the current clip path.

rectangular clipping
path defined

star painted with
active rectangular
clipping path

The illustration depicts how defining a clip path affects painting operations. In this case, a
rectangular clipping region is defined for the clip path object. After the clip path is
defined, a star object is painted to the page near the origin. The only elements of the
diagonally-striped star painted on the page are those lying within the clip path.

Flexible clip path definition allows the driver or application to efficiently image complex
graphics without using compute and memory expensive raster operations (ROPs).

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
23

3.13 Clip Path Object Operator Listing

Clip
Path
Object
Class

Clip
Path
Operators

SetClipReplace

SetClipIntersect

SetClipRectangle

SetClipToPage

SetClipMode

The illustration shows some of the operators for the clip path object.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
24

3.14 Rotate and Transform Concepts
The component used to map user coordinate space to the page
surface coordinate space is called a coordinate transformation
matrix (CTM). The user may manipulate values in the CTM to
rotate and transform the way in which text, vector objects, and

raster pixels are painted on the page surface. Initially, the CTM is set such that the origin
of a page is the top left corner (whether the page or portrait or landscape).

new
x=0, y=0

4 inches

5 inches

clip-art painted
at new user origin

The illustration depicts a case where the user has changed the CTM to translate the user
origin to 4 inches to the right of the original origin and 5 inches down from the original
origin. On the right of the illustration, clip-art now painted at user coordinates of x = 0, y
= 0 will be printed on the physical page at 4 inches to the right and 5 inches down from
the original origin.

Setting the session user resolution attribute also uses the CTM to accomplish device-
independence. For example, the user may prefer to work in 72 units-per-inch coordinates
on a device that happens to be 600 pixels-per-inch internally. The user may accomplish
this by setting the user resolution attribute to 72 units-per-inch for the session. In this and
every case the CTM takes care of translating all the user coordinates (e.g. 72 units-per-
inch) to the internal device coordinates (e.g. 600 units-per-inch). The user may work
during the entire session in 72 units-per-inch space and automatically achieve the device-
best resolution on the page for line edges, text shapes, and raster objects. A driver or
application with specific knowledge of a device may be written to set the user session
resolution to the target device’s internal resolution to achieve the best possible
performance.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
25

3.15 Page Rotate and Transform Operator Listing

Page
Rotate and
Transform
Operators

Page
Object
Class

SetPageDefaultCTM

SetPageOrigin

SetPageRotation

SetPageScale

The illustration shows some of the operators for the page coordinate system settings.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
26

3.16 Raster Operations
PCL 6 allows raster operations (ROPs). ROPs are set to cause bit-
wise operations (AND, OR, XOR, & NOT) on painted graphical
objects in conjunction with the images already on the page and the
paint source. A protocol class that supports ROPs supports at least
all standard ROP3 operations.

ROPs are particularly useful for applications not supporting paths and clipping to achieve
WYSIWYG for complex graphics effects. However, the document description size when
using ROP operations for clipping is often much larger than using path clipping and should
be avoided whenever possible.

3.17 Raster Operator Listing

ROP
Object
Class

ROP
Operators

SetROP

SetSourceTxMode

SetPaintTxMode

The illustration shows the operators for altering the current ROP.

10000001
OR 10101110

= 10101111

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
27

3.18 Graphics State Object
All PCL 6 graphical objects read and set some attributes in the Graphics
State Object during definition and painting operations. For example, the
path object maintains its current list of components in the graphics state.
When the path is painted, the elements to be painted are read from the
graphics state object.

Another example graphics state attribute is the current raster operation or ROP. When an
object is painted, the ROP stored in the graphics state is read prior to painting. The ROP
affects how the paint for the pen and brush are combined with the object being painted and
with images already on the page.

The graphics state is modeled as a stack such that the attributes may be pushed and
popped in a last-saved, first-restored manner. The current values in the graphic state may
be pushed (saved) and popped (restored) at any point in time. The “active” graphics state
elements read and written by graphical objects are always the elements at the top of the
graphics state stack.

3.19 Graphics State Object Operator Listing

Graphics
State
Operators

Graphics
State
Object

PushGS

PopGS

The illustration shows the operators for pushing (saving) or popping (restoring) the
current graphics state.

BRUSH PAINT
SOURCE = RED

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
28

4.0 PCL 6 Operator and Attribute List Design

4.1 Operators
PCL 6 commands are called operators. PCL 6 is specifically designed to have a minimum
number of operators for ease-of-use, efficiency, and best performance. All operators
create, modify, or paint PCL 6 objects. Examples of objects are sessions, pages, the
current path, bitmap images, and the current font.

Parameters associated with operators are used to set an object’s attributes. These
parameters are stored in an operator’s attribute list.

Large amounts of data needed by an operator may be obtained for sources external to the
attribute list (such as raw data placed in-line in the stream body).

4.2 PCL 6 Attribute Lists
Attribute Lists hold parameter data for PCL 6 operators. Every operator has one attribute
list upon execution. An attribute list contains a set of one or more attribute value /
identifier pairs. Each pair in an attribute list contains an attribute identifier and a set of
one or more values for the attribute.

Attribute Value

BoundingBox600 600 1300 2500

Attribute Identifier

Attribute List

The attribute list in the illustration has one attribute value/identifier pair. This attribute
value/identifier pair is used to define a bounding box with two points (two x, y values). A
bounding box attribute pair may be used to define the size of an ellipse or a rectangle.

Each operator knows the valid data type(s) and number of values expected for each
attribute identifier. The attribute identifiers in the illustration are represented by a name.
The actual attribute identifier is a unique number from a set of attribute identifiers defined
for the PCL 6 imaging protocol.

Attribute lists may hold zero, one, or more attribute value/identifier pairs. Many operators
need only one attribute value/identifier pair each time they are executed such as the pair in
the illustration.

Attribute value/identifier pairs defined for an operator are not saved following the
execution of that operator. Immediately following the execution of an operator, the
attribute list is emptied.

If multiple attribute value/identifier pairs of the same attribute identifier are entered by
mistake into the attribute list, the attribute value for the first attribute identifier entered is
used by the operator.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
29

4.3 Variable-Length Attribute Lists
Variable-length attribute lists are used when the exact number and type of attributes may
vary for an operator.

PatternSelectID1

Variable Length Attribute List

(optional)
PatternOrigin1000 1000

The illustration shows an example of two attribute value/identifier pairs for an operator.
One or both of these two attribute value/identifier pairs may be provided to the
SetBrushSource operator to select a pattern for filling elements in a path object. The
PatternSelectID attribute value/identifier pair is required for the operator. The
PatternOrigin attribute value/identifier pair is optional. If the PatternOrigin attribute
value/identifier pair is not supplied, the origin for tiling the pattern will be the top left
corner of the current page.

Variable-type and variable-length attribute lists are allowed through the “operator-
overloading” feature of PCL 6. A simple example of this type of operator flexibility is the
plus (“+”) operator in most programming languages. The same plus operator may be used
to add two integer numbers one time and two fractional numbers another time. The
operator is always known to the user as plus (“+”) even though different data types may
be used. This principle of “operator overloading” is often employed in object-oriented
systems.

When an operator is to be executed, an attribute list is associated with the operator. The
method of association is implementation-specific. For example, if the device interface is a
serial byte-stream, the attribute list may simply be data preceding the operator. If the
imaging protocol is communicated to the device via a programming-language API, the
attribute list may be parameters in a function call.

When multiple attribute value/identifier pairs are added to an attribute list, the order in
which pairs are added is not significant. PCL 6 will extract attribute value/identifier pairs
in the order in which they are needed for the operator.

The attribute list mechanism allows PCL 6 to be easily modified for each target imaging
environment. Attribute lists simplify the device protocol interface (parsers and function-
based APIs) and enhance error checking prior to operator execution.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
30

4.4 Simple Operator Examples
This example shows how to paint an ellipse that fits to a one-inch square bounding-box
(600 user-units-per-inch assumed along the x- and y-axis):

Step 1: Build the Attribute List
600 600 1200 1200 BoundingBox // defines a one-inch square bounding box

// attribute id with the corresponding values

Step 2: Perform the Operation
Ellipse // defines an ellipse path and paints it

The following PCL 6 sample session paints a single two-inch line on a page:

eInch Measure // attribute: basic measure for the session is inches
600 600 UnitsPerMeasure // attribute: 600 units in both X and Y direction
BeginSession // operator: begin the imaging session

ePortraitOrientation Orientation // attribute: page orientation is portrait
eLetterPaper MediaSize // attribute: size of media for page is letter
BeginPage // operator: begin the page description

1200 800 Point // attribute: point at which to set the current cursor
SetCursor // operator: set the cursor

2400 800 EndPoint // attribute: endpoint of a 2 inch line
LinePath // operator: add the line to the current path

PaintPath // operator: paint the current path

EndPage // operator: end the page description

EndSession // operator: end the imaging session

The entire imaging session illustrated above may be described in only 40 bytes in the
binary stream format accepted by PCL 6 devices.

The attribute values that begin with “e” such as “eInch” are actually names for enumerated
integer values. For example, eInch is simply a name for the value 0 for the Measure
attribute.

PCL 6: A White PaperPCL 6: A White Paper

Hewlett-Packard Company Confidential
31

5.0 PCL 6: A Match for Complex Graphics Imaging

B CA

GUI Application

PCL 6 Device

One-
To-
One
Match

One-
To-
One
Match

PCL 6 imaging tools and objects are designed for the demanding requirements of images
produced from today’s and future graphical user interface-based applications.

PCL 6 tools provide efficient and compact methods for communicating complex images
among devices in a device-independent form.

PCL 6 provides an excellent foundation for future graphics features due to built-in
operator extendibility.

PCL 6 is an appropriate vehicle for insuring the highest quality and best performance for
digital imaging.

