
4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 1/13

Using PDF generation to make
beautiful webpage prints
This tutorial demonstrates how to make great looking, cross-

browser compatible printable forms of web content right from

the HTML you already have live.

We’ll be using a great PDF-generation tool called PrinceXML.

PrinceXML is commercial software, although a fully-functional

free version is available for download for non-commercial use.

Many of the principles demonstrated also apply to making

good-looking prints right from the web browser, but using

PrinceXML to generate a PDF ensures the results will be the

same regardless of browser, and allow us to take advantage of

extra page-layout abilities that aren’t supported by all browsers.

Contents [hide]

1 Background

2 Downloading PrinceXML

3 Establishing the baseline

4 Generate a PDF from PrinceXML

5 Stage one: Eliminate Junk

6 Stage two: Make It Pretty

7 Results

Print Developers
Community

Blog

Tutorials Forum Resources

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 2/13

8 Resources

Background
It might not be intuitive why we would convert a webpage to a
PDF to print it. Let me start by showing the two different
printing paths to make it clear what we’re talking about.

The diagram above shows two different approaches to printing
web content. The approach on the left is the traditional
method. The user’s web browser retrieves the HTML, the user
clicks print, the browser renders the HTML into a printer-ready
format using print API calls on whatever operating system it’s
on. Optionally, if print-specific CSS is available via a media
query, that CSS is used for print.

The benefit is that it’s simple and built into the browser. The
downside is that most web browsers don’t support the full
range of CSS that’s available for printing. In many cases,
support for particular features might be missing (multi-column
support, hyphenation) or imperfect, making it difficult to
achieve high-fidelity prints. In addition, you get some of the
same cross-browser problems you get with normal webpage
rendering, meaning that you need different CSS for different
browsers.

The path on the right is more complicated, but it’s also more

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 3/13

robust, consistent, and supports all the CSS you need to achieve

high-fidelity prints.

In the second approach, the HTML is retrieved not by the user’s

web browser, but by a dedicated PDF rendering engine. There

are two popular ones at this time: wkhtmltopdf and PrinceXML.

The former is free and open-source, the latter is costly but

amazing. (By the way, I have no association with PrinceXML.

I just like their tool.) The PDF rendering engine can optionally

override the default CSS with a special print CSS source, and it

outputs a PDF. That PDF can then be consistently printed,

regardless of the end user’s browser, operating system, or

printer.

Usually the PDF rendering would take place on a web server,

with the web app responsible for generating the PDF behind

the scenes, and sending the PDF through the browser for the

user to print. But for the purpose of this tutorial, we’ll be doing

it all locally, taking advantage of the ability to override the CSS.

Downloading PrinceXML
If you want to follow along, download PrinceXML and follow

their instructions to install it.

Establishing the baseline
Usually the first step is to see how a website looks when printed

using the default CSS. In many cases, what looks good on a

computer or mobile devices looks terrible when printed.

I’m a fan of Wired, so I’m going to use their website as an

example throughout this article. I’m not doing this to pick on

Wired in particular, as many websites have problems with their

printed version.

In the web browser, a recent article on Europa looks great:

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 4/13

Wired.com article captured on 2015-02-04.

The main body of the article takes up about two screenfuls of

content if I scroll down. So if I print the article, I should get

about two pages of printed content, right? Unfortunately, no. I

get 18 pages. Those 18 pages consist of:

7 pages of unusable references to other articles.

1 page of unusable advertisements.

1 page of the article, poorly formatted.

4 pages of comments on the article.

5 pages of unusable links to Wired writers.

Here’s the result of the built-in browser print with default

CSS: WiredEuropaBrowserPrint (PDF, 6.1MB). Here’s one

example page from the output:

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 5/13

Example of browser print with default CSS. Not only

are these photos and links poorly formatted, but they

are of no use on a printed page.

Generate a PDF from PrinceXML
Now that we know what the default behavior is, let’s switch to

generating PDFs from PrinceXML. This will allow us to create

our own CSS and rapidly iterate to improve the output. Here’s

an example command line to generate a PDF:

We haven’t created wired.css yet, so you’ll see a warning

message, but the PDF will still be generated. The output

is similar to the built-in browser print.

Stage one: Eliminate Junk
By using Chrome’s Inspect Element feature, we can examine the

page’s html structure, and start to turn off elements that don’t

1
2
3
4

prince --no-author-style \
 -s wired.css \
 http://www.wired.com/2015/02/white-house-wants-go-europa \
 -o europa.pdf

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 6/13

add value on printed output. A bit of quick perusing shows us
that much of the noise comes from nav#global-nav and
aside#sidebar. Neither of these navigational elements makes
sense in the context of print, so let’s turn them off.

Start with this in wired.css:

Then regenerate the PDF using Prince. It shrinks from the
original 18 pages and 6MB to a far smaller 5 pages: prince-1-
europa (PDF, 136KB).

It takes a little more work investigating what’s generating the
remainder of unclickable links and photos, but eventually we
can get it down to a very clean, if ugly, 3 pages with this CSS:

This is the resulting, cleaned up 3 page PDF: prince-2-
europa (PDF, 103KB)

1

2

3

4

5

aside#sidebar, nav#global-nav {

 display:none;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

/* top nav and side-nav*/

#global-nav, #leaderboard, #sidebar, #footer-ad, #post-nav, #disqus_thread, #social-bottom, #social-top, #entry-extra, #tag-header {

 display: none;

}

.advertisement, .OUTBRAIN, .entry-extra, .entry-tags {

 display: none;

}

footer {

 display: none;

}

noscript {

 display: none;

}

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 7/13

Page 1 of the resulting file. It’s cleaned up
of extraneous details, but not yet styled.

Reminder #1: Everything we’ve done so far using Prince can
also be done in the browser using media queries to detect the
‘print’ media type. We do this by creating a media query in the
primary CSS file:

Ideally, site owners should be creating their own @media print
CSS. With about an hour of work, Wired could dramatically
improve how their articles print.

Reminder #2: For the purposes of this demo, we’ve been
aggressive about turning off everything that isn’t essential to
the printed article. But in a real-world context, it may make
sense to keep some of that content. What is kept will need to
be specially formatted for print. For example, a small number
of banner ads and navigation elements can be displayed, but
they should be actionable from the printed page. That implies
either printing a short, keyboard-friendly URL below it, or using
image watermarking technology so that a smartphone can
automatically follow it. (HP plug: we have a web service called
Link Technology that implements both, and can make it easier

1
2
3
4
5

@media print {
 …
}

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 8/13

for you to make great website prints.) In the Wired example, we

can imagine that they can be strategic about choosing the one

or two most valuable ads, and including them on the printed

page.

Stage two: Make It Pretty
Once we’ve eliminated what we don’t need, we can focus on

making the rest of the content attractive while conforming to

good visual design principles for print.

This next bit of CSS will make the headline and byline look

better on the printed page. We’re changing the font to match

what Wired uses, and eliminating the bulleted list.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/* headers and meta-data */
.entry-header, .product-info {
 color: #333;
 font-family: brandon-grotesque, brandon-grotesque-1, brandon
 font-size: 12px;
 line-height: 15px;
 margin: 10px 0;
 text-transform: uppercase;
}

.entry-header li {
 display: none;
 white-space: nowrap;
 list-style: none;
}

/* specific to wired articles - not really ideal for other sites */
.entry-header li.author, li.entryDate, li.entryTime {
 display: inline-block;
 white-space: nowrap;
 list-style: none;
}
h1, h2, h3 {
 font-family: brandon-grotesque, brandon-grotesque-1, brandon
 font-size: 24px;
 line-height: 32px;
 margin-bottom: -12px;
}

h1#headline {
 font-family: brandon-grotesque, brandon-grotesque-1, brandon
 font-size: 28px;
 line-height: 30px;
 margin-bottom: 10px;
}

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 9/13

The result is that we change from unstyled to styled article title
and byline:

Before styling

Here’s the styled version:

After styling

Now that our headline is done, we have to address the body of
the article. We still have a few problems to deal with:

1. Print design principles tell us that shorter lines are
easier for the eye to track than longer lines. That’s why
print magazines and newspapers use narrow columns.
So we’ll switch to two-column layout.

2. Short line-lengths only look good when hyphenation is
turned on. Otherwise we get distracted by the pattern
of the right side of the column.

3. Big photos look great online, but when printed they
consume a lot of ink, which people don’t like.

4. Printed links don’t do us much good. We can turn off
the link or display the destination url. We’ll save the
latter approach for another tutorial, because we can
use HP Link Technology to display the destination url.
For today, we’ll just turn off the blue underlined links.

Fortunately PrinceXML supports both multiple columns and
hyphenation.

This CSS will address all four items:

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 10/13

Results
The final result of about an hour of CSS design work is a
reasonably attractive two page article (prince-4-europa PDF,
100KB):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

/*Two column layout*/
div.entry {
 columns: 2;
 column-gap: 1.5em;
}

/* Use hyphenation and an appropriate print font */
p {
 font-family: 'Exchange SSm 4r', Georgia, serif;
 font-size: 14px;
 font-style: normal;
 font-variant: normal;
 font-weight: normal;
 line-height: 18px;
 text-align: justify;
 hyphens: auto;
 prince-hyphenate-lines: 2;
 prince-hyphenate-before: 3;
 prince-hyphenate-after: 2;
 orphans: 2;
 widows: 2;
}

/* adjust the image and caption to fit within a column */
p.wp-caption-text img {
 height: 10px;
 width: auto;
}

p.wp-caption-text {
 font-family: proxima-nova, proxima-nova-1, proxima-nova-
 font-size: 11px;
 text-align: center;
 color: #444;
 margin-top: 0px;
}

.size-660-single-full, .size-full {
 width: 100%;
 height: auto;
}

/* hide those ugly links... */
a:link {
 color: #000000;
 text-decoration: none
}

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 11/13

Final results of our CSS work. (The square in the upper-right corner is an

artifact created by the trial version of PrinceXML.)

We’ve cut output from eighteen pages to two, eliminating

useless and unneeded information. We’ve designed our page

for print, choosing an appropriate font, line length, and layout

that is optimized for the printed page. In short, we’ve made the

output both more useful and more attractive, making it likely

that this printed article still stick around longer and be read by

more people.

Much of what I’ve shown today can also be achieved in the

browser using print media queries. However, browser support

of multiple column layout and hyphenation varies. To get the

highest fidelity prints, using an approach where PDFs are

generated on the server will guarantee consistency across all

browsers, even for mobile printing.

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 12/13

Resources
PrinceXML has loads of great examples of what can be

done with their PDF generator on their samples page.

I also mentioned HP Link Technology, HP’s server side tool

for generating short, keyboard-friendly URLs, QR codes,

and scannable images.

Tips and Tricks for Print Style Sheets is another great

tutorial that goes into print media queries.

If you have any questions, drop by the print developers forum.

Edit

Post a Comment

WordPress Account (Log out)

Comment

Post It

Welcome to the Print

Developers Community.

This is a place to find

information and

discussions on

implementing printing in

software, including web,

mobile, and PC

applications.

4/10/2015 Using PDF generation to make beautiful webpage prints |

http://www.print-dev.com/tutorials/using-pdf-generation-to-make-beautiful-webpage-prints/ 13/13

Recent
Comments

@BarTGila on New

Tutorial:

Generating PDFs

from HTML for

non-web content

@oamike on New

Tutorial: Using PDF

generation to make

beautiful webpage

prints

@oamike on New

Tutorial:

Generating PDFs

from HTML for

non-web content

@CheloveckBen on

New Tutorial: Using

PDF generation to

make beautiful

webpage prints

Copyright © 2015 Sponsored by HP

Print Developers

Community is sponsored

by HP, but open to all.

